Faculty of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
Abstract
Our main aim is to compute eigenvalues of generalized shift isomorphism $\sigma_\varphi:V^\Gamma\to V^\Gamma$ with $\sigma_\varphi((x_\alpha)_{\alpha\in\Gamma})= (x_{\varphi(\alpha)})_{\alpha\in\Gamma}$ ($ (x_\alpha)_{\alpha\in\Gamma}\in V^\Gamma$) where $V$ is a vector space (over field $F$), $\Gamma$ is a nonempty arbitrary set and $\varphi:\Gamma\to\Gamma$ is an arbitrary bijection.
Ayatollah Zadeh Shirazi, F. , & Soleimani, E. (2019). On eigenvalues of generalized shift linear vector isomorphisms. Computational Methods for Differential Equations, 7(Issue 4 (Special Issue)), 616-620.
MLA
Fatemeh Ayatollah Zadeh Shirazi; Elham Soleimani. "On eigenvalues of generalized shift linear vector isomorphisms", Computational Methods for Differential Equations, 7, Issue 4 (Special Issue), 2019, 616-620.
HARVARD
Ayatollah Zadeh Shirazi, F., Soleimani, E. (2019). 'On eigenvalues of generalized shift linear vector isomorphisms', Computational Methods for Differential Equations, 7(Issue 4 (Special Issue)), pp. 616-620.
CHICAGO
F. Ayatollah Zadeh Shirazi and E. Soleimani, "On eigenvalues of generalized shift linear vector isomorphisms," Computational Methods for Differential Equations, 7 Issue 4 (Special Issue) (2019): 616-620,
VANCOUVER
Ayatollah Zadeh Shirazi, F., Soleimani, E. On eigenvalues of generalized shift linear vector isomorphisms. Computational Methods for Differential Equations, 2019; 7(Issue 4 (Special Issue)): 616-620.