[1] E. Babolian and M. Mordad, A numerical method for solving system of linear and nonlinear integral equations of the second kind by hat basis functions, Comput. Math. Appl., 62 (2011), 187-198.
[2] E. T. Bell, Exponential polynomials, Ann. of Math., 35 (1934), 258-277.
[3] A. Bernardini and P. E. Ricci, Bell polynomials and dierential equations of Freud-type polyno-mials, Math. Comput. Model., 36 (2002), 1115-1119.
[4] H. Brunner, On the numerical solution of Volterra-Fredholm integral equation by collocation methods, SIAM J. Numer. Anal., 27(4) (1990), 87-96.
[5] C. A. Charalambides, Enumerative Combinatorics, Chapman and Hall/CRC, Boca Raton, 2002.
[6] L. Comtet, Advanced Combinatorics: The art of nite and innite expansions, D. Reidel publishing co., Dordrecht, 1974.
[7] L. M. Delves and J. L. Mohamed, Computational methods for integral equations, Cambridge University Press, Cambridge, 1985.
[8] A. Di Cave and P. E. Ricci, Suipolinomidi Bell edinumeridi Fibonacciedi Bernoulli [On Bell polynomials and Fibonacci and Bernoulli numbers], Le Matematiche., 35 (1980), 84-95.
[9] M. Gasca and T. Sauer, On the history of multivariate polynomial interpolation, J Comput. Appl. Math., 122 (2000), 23-35.
[10] M. Ghasemi, M. Tavassoli Kajani, and E. Babolian, Numerical solutions of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method, Appl. Math. Comput., 188 (2007), 446-449.
[11] F. A. Hendi and A. M. Albugami, Numerical solution for Fredholm-Volterra integral equation of the second kind by using collocation and galerkin methods, J. King Saud Uni., 22 (2010),37-40.
[12] M. G. Kendall and A. Stuart, The advanced theory of statistics, Grin, London, 1958.
[13] A. Kurosh, Coyrs d' Algebre Superieure, Editions Mir, Moscow, 1971.
[14] K. Maleknejad, H. Almasieh, and M. Roodaki, Triangular functions (TFs) method for the solution of nonlinear Volterra-Fredholm integral equations, Commun. Nonlin. Sci. Numer. Simula., 15 (2010), 3293-3298.
[15] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, CRC Press LLC, 2003.
[16] F. Mirzaee and E. Hadadiyan, Numerical solution of Volterra-Fredholm integral equations via modication of hat functions, Appl. Math. Comput., 280 (2016), 110-123.
[17] Y. Ordokhani and M. Razzaghi, Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via a collocation method and rationalized haar functions, Appl. Math. Lett., 21 (2008), 4-9.
[18] J. Riordan, An introduction to combinatorial analysis, Wiley publication in mathematical statistics, John Wiley sons, New Yorks, 1958.
[19] W. Wang and T. Wang, General identities on Bell polynomials, Comput. Math. Appl., 58 (2009), 104-118.
[20] S. Yalcinbas, Taylor polynomial solution of nonlinear Volterra-Fredholm integral equations, Appl. Math. Comput., 127 (2002), 195-206.
[21] S. Yousefi and M. Razzaghi, Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations, Math. Comput. Simula., 70 (2005), 419-428.