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Abstract In this paper, we propose and analyze an efficient matrix method based on Bell poly-
nomials for solving nonlinear Fredholm-Volterra integral equations, numerically. For

this aim, first we calculate operational matrix of integration and product based on
Bell polynomials. By using these matrices, nonlinear Fredholm-Volterra integral
equations reduce to the system of nonlinear algebraic equations which can be solved
by an appropriate numerical method such as Newton’s method. Also, we show that

the proposed method is convergent. Some examples are provided to illustrate the ap-
plicability, efficiency and accuracy of suggested scheme. Comparison of the proposed
method with other previous methods shows that this method is very accurate.
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1. Introduction

Integral equations are applied in modelling many phenomena which arise in differ-
ent science such as mathematical finance, biology, medical, social sciences, etc. For
example, the Volterra-Fredholm integral equations occurs from parabolic boundary
value problems, from the mathematical modelling of the spatial-temporal develop-
ment of an epidemic, and from various physical and biological models. Since, in
many situation, such equations cannot be solved exactly, it is important to obtain
their approximate solutions by using some numerical methods. In this paper, we
consider the following nonlinear Fredholm-Volterra integral equation

f(x) = g(x) + λ1

∫ 1

0

k1(x, y)N1(y, f(y))dy

+ λ2

∫ x

0

k2(x, y)N2(y, f(y))dy, x ∈ [0, 1], (1.1)

where, λ1 and λ2 are arbitrary real constant, g(x), k1(x, y), k2(x, y),N1(x, f(x)) and
N2(x, f(x)) are known functions whereas f(x) is an unknown function which should
be determined. N1(x, f(x)) and N2(x, f(x)) are nonlinear terms. First integral in Eq.
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(1.1) is Fredholm integral term and second integral in Eq. (1.1) is Volterra integral
term. Also, We assume that Eq. (1.1) have a unique solution f(x) [11, 7]. Several
numerical methods have been applied for solving nonlinear Fredholm-Volterra integral
equations. For example, collocation methods [4], Taylor polynomial methods [20],
Homotopy perturbation method [10], triangular functions methods [14], rationalized
Haar functions methods [17], wavelets methods [21] and many other methods.
In this paper, we suggest an efficient method based on Bell polynomials for solving
nonlinear Fredholm-Volterra integral equation (1.1).

2. Bell polynomials

The Bell polynomials were studied extensively by E. T. Bell in 1934 [2]. These
polynomials naturally occur from differentiating a composite function several times.
Bell polynomials have many application in number theory and classical analysis and
there are a vast literature about their applications [5, 6, 19]. They are frequently
applied in combinatorial analysis [18] and statistics [12]. Also, these polynomials have
been used in many other contexts such as the Blissard problem [18], the representation
of Lucas polynomials of the first and second kinds [8], the recurrence relations for a
class of Freud-type polynomials [3], the representation of symmetric functions of a
countable set of numbers, generalising the classical algebraic Newton-Girard formulas
[13].
In the following of this section, we mention some properties of the Bell polynomials
which will be used in the next section.
Property 1(Differentiation property [2, 6, 18])

d

dx
Bn(x) =

Bn+1(x)

x
−Bn(x), n = 1, 2, . . . .

Property 2(Recurrence equation [2, 6, 18])

xBn+1(x) = x[B′
n(x) +Bn(x)], n = 1, 2, . . . .

Property 3(A series representation in term of Stirling number of the second kind
[2, 6, 18]). The Bell polynomials can be computed as

Bn(x) =

n∑
k=0

S(n, k)xk,

where S(n, k) for k = 0, 1, . . . , n are the Stirling numbers of the second kind which
can be calculated as follows

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.

By using third property of the Bell polynomials, we obtain

B(x) = SX(x), (2.1)
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where

B(x) = [B0(x), B1(x), . . . , BN (x)]T , X(x) = [1, x, . . . , xN ]T , (2.2)

S =


S(0, 0) 0 · · · 0
S(1, 0) S(1, 1) · · · 0

...
...

. . .
...

S(N, 0) S(N, 1) · · · S(N,N)

 . (2.3)

Since matrix S is a lower triangular matrix with nonzero diagonal elements, so this
matrix is nonsingular and hence S−1 exists. So, from Eq. (2.1), we have

X(x) = S−1B(x). (2.4)

3. Function approximation

Consider the set of Bell polynomials

B(x) = [B1(x), B2(x), . . . , BN (x)]T ,

and suppose that

S = span{B1(x), B2(x), . . . , BN (x)},

also, suppose that f be an arbitrary function in H = L2[0, 1]. Because S is a finite
dimensional vector space, so f has the best approximation out of S such as fN ∈ S ,
that is

∀g ∈ S ∥f − fN∥ ≤ ∥f − g∥.

Since fN ∈ S , there exist unique coefficients f1, f2, . . . , fN , such that

f(x) ≃ fN (x) =
N∑
i=0

fiBi(x) = FTB(x), (3.1)

where B(x) is the Bell vector defined in Eq. (2.2) and F is the Bell coefficients vector
defined as

F = [f0, f1, . . . , fN ]T .

For computing the coefficients fi, we let

cj =

∫ 1

0

f(x)Bj(x)dx, j = 0, 1, . . . , N.

So, by using Eq. (3.1), we have

cj =

∫ 1

0

N∑
i=0

fiBi(x)Bj(x)dx =

N∑
i=0

fi

∫ 1

0

Bi(x)Bj(x)dx

=

N∑
i=0

fidij , j = 0, 1, . . . , N, (3.2)
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where

dij =

∫ 1

0

Bi(x)Bj(x)dx. (3.3)

We let

D = [dij ](N+1)×(N+1),

C = [c0, c1, . . . , cN ]T .

From Eq. (3.2), we have

CT = FTD =⇒ FT = CTD−1. (3.4)

Similarly, we can expand an arbitrary bivariate function in terms of Bell polynomials
as follows

k(x, y) ≃ kN (x, y) = BT (x)KB(y) = BT (y)KTB(x), (3.5)

where K = [kij ] is an (N + 1)× (N + 1) matrix which kij can be obtained as follows

K = D−1
[∫ 1

0

∫ 1

0

k(x, y)B(x)B(y)dxdy
]
D−1.

4. Operational matrix

From definition of standard basis, we have

∫ x

0

X(y)dy =


0 1 0 · · · 0
0 0 1

2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
N

0 0 0 · · · 0


︸ ︷︷ ︸

M


1
x
...

xN−1

xN

+


0
0
...
0
1


︸ ︷︷ ︸
IN+1

xN+1

N + 1

= MX(x) +
xN+1

N + 1
IN+1. (4.1)

Now, by omitting the second term in Eq. (4.1), we can approximate the integration
of the vector X(x) as follows∫ x

0

X(y)dy ≃ MX(x). (4.2)

By using Eqs. (2.1), (2.4) and (4.2), the operational matrix of integration based on
Bell polynomials obtain as∫ x

0

B(y)dy = S

∫ x

0

X(y)dy = SMX(x) = SMS−1︸ ︷︷ ︸
P

B(x) = PB(x). (4.3)

The matrix P in Eq. (4.3), is called operational matrix of integration.
The dual matrix of B(x) is defined by

Q =

∫ 1

0

B(x)BT (x)dx =

∫ 1

0

SX(x)XT (x)ST = SHST , (4.4)
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where S was defined in Eq. (2.3) and H is the Hilbert matrix of order N + 1.

It is always necessary to compute the product of B(x) and BT (x) in a arbitrary
vector U = [u0, u1, . . . , uN ]T , that is called the product matrix of Bell polynomials
basis. In the following of this section, we introduce the concept of operational matrix
of product. Suppose that U be a column vector and X(x) be the Bell vector which

was defined in Eq. (2.2). The matrix Û of order (N + 1) × (N + 1) which satisfies
in the following relation is named the operational matrix of product based on Bell
polynomials

B(x)BT (x)U ≃ ÛB(x). (4.5)

Now, we try to get an explicit formula for Û . By substituting Eq. (2.1) into Eq.
(4.5), we have

B(x)BT (x)U = SX(x)BT (x)U

= S
[ N∑
i=0

uiBi(x),
N∑
i=0

uixBi(x), . . . ,
N∑
i=0

uix
NBi(x)

]T
. (4.6)

For j = 0, 1, . . . , N , we can expand each xjBi(x) by applying Bell polynomials as
follows

xjBi(x) ≃
N∑
r=0

ej,ir Br(x) = eTj,iB(x) = BT (x)ej,i, i, j = 0, 1, . . . , N, (4.7)

where ej,i = [ej,i0 , ej,i1 , . . . , ej,iN ]T . From Eq. (4.7), we obtain

N∑
i=0

uix
jBi(x) =

N∑
i=0

ui

N∑
r=0

ej,ir Br(x) =

N∑
r=0

N∑
i=0

uie
j,i
r Br(x)

=

N∑
r=0

Br(x)
( N∑
i=0

uie
j,i
r

)
= BT (x)[ej,0, ej,1, . . . , ej,N ]U

= BT (x)Ej , (4.8)

where Ej = [ej,0, ej,1, . . . , ej,N ]U . We define matrix E of order (N + 1)× (N + 1) as
follows

E =
[
E0, E1, . . . , EN

]
.

By using Eqs. (4.6) and (4.8), we conclude

B(x)BT (x)U ≃ SETB(x). (4.9)

So, by comparing Eqs. (4.5) and (4.9), we conclude Û = SET .

5. Method of solution

In this section, we consider nonlinear mixed Fredholm-Volterra integral equation
(1.1). To solve this equation numerically, let

z1(x) = N1

(
x, f(x)

)
, z2(x) = N2

(
x, f(x)

)
. (5.1)
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So, we have

f(x) = g(x) + λ1

∫ 1

0

k1(x, y)z1(y)dy + λ2

∫ x

0

k2(x, y)z2(y)dy. (5.2)

From Eqs. (5.1) and (5.2), we have{
z1(x) = N1

(
x, g(x) + λ1

∫ 1

0
k1(x, y)z1(y)dy + λ2

∫ x

0
k2(x, y)z2(y)dy

)
,

z2(x) = N2

(
x, g(x) + λ1

∫ 1

0
k1(x, y)z1(y)dy + λ2

∫ x

0
k2(x, y)z2(y)dy

)
.

(5.3)

Now, we approximate all functions in Eq. (5.3) by using Bell polynomials as follows

zi(x) ≃ ZT
i B(x) = BT (x)Zi, i = 1, 2,

ki(x, y) ≃ BT (x)KiB(y) = BT (y)KT
i B(x), i = 1, 2,

g(x) ≃ GTB(x) = BT (x)G, (5.4)

where B(x) was defined in Eq. (2.2) and for i = 1, 2, the vectors Zi and matrices Ki

are Bell polynomials coefficients of zi(x) and ki(x, y), respectively.
By substituting Eq. (5.4) into Eq. (5.3) and using Eqs. (4.3), (4.4) and (4.5), we
have {

ZT
1 B(x) = N1

(
x,GTB(x) + λ1B

T (x)K1QZ1 + λ2B
T (x)K2Ẑ2B(x)

)
,

ZT
2 B(x) = N2

(
x,GTB(x) + λ1B

T (x)K1QZ1 + λ2B
T (x)K2Ẑ2B(x)

)
.

(5.5)

By collocating Eq. (5.5) at the following Newton-Cotes points

xi =
2i− 1

2(N + 1)
, i = 1, 2, . . . , N + 1, (5.6)

the following nonlinear system of 2(N+1) algebraic equations and 2(N+1) unknowns
are concluded{

ZT
1 B(xi) = N1

(
xi, G

TB(xi) + λ1B
T (xi)K1QZ1 + λ2B

T (xi)K2Ẑ2B(xi)
)
,

ZT
2 B(xi) = N2

(
xi, G

TB(xi) + λ1B
T (xi)K1QZ1 + λ2B

T (xi)K2Ẑ2B(xi)
)
.

(5.7)

After solving this nonlinear system by a suitable method such as Newton’s method,
the approximate solution of Eq. (1.1) can be obtained as

f(x) = g(x) + λ1B
T (x)K1QZ1 + λ2B

T (x)K2Ẑ2B(x).

6. Convergence and error estimation

Theorem 6.1. Suppose that f(x) be a sufficiently smooth function on [0, 1] and
PN (x) be the interpolating polynomials of f(x) at points xi, i = 0, 1, . . . , N, which
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for i = 0, 1, . . . , N , the points xi are the roots of the shifted Chebyshev polynomial
of order N + 1 on the interval [0, 1]. Then we have [9]

f(x)− PN (x) =
∂N+1f(η)

∂xN+1(N + 1)!

N∏
i=0

(x− xi), (6.1)

where η ∈ [0, 1]. Therefore

∣∣f(x)− PN (x)
∣∣≤ max

x∈[0,1]

∣∣∣∂N+1f(x)

∂xN+1

∣∣∣∏N
i=0 |x− xi|
(N + 1)!

. (6.2)

Suppose that there is the following upper error bound

max
x∈[0,1]

∣∣∣∂N+1f(x)

∂xN+1

∣∣∣≤ ξ, (6.3)

By replacing Eq. (6.3) into Eq. (6.2) and taking into account the estimates for
Chebyshev interpolation nodes [15], conclude∣∣f(x)− PN (x)

∣∣≤ ξ
( 12 )

N+1

(N + 1)!2N
. (6.4)

Theorem 6.2. Let fN (x) defined in Eq. (3.1), be the best approximation of real suf-
ficiently smooth function f(x) by using Bell polynomials. Then there is real constant
ξ such that

∥f(x)− fN (x)∥2 ≤ ξ
( 12 )

N+1

(N + 1)!2N
. (6.5)

Proof. ΠN be the space of polynomials of order N . According to the definition, fN (x)
is the best approximation of f(x) when

∀g(x) ∈ ΠN ; ∥f(x)− fN (x)∥2 ≤ ∥f(x)− g(x)∥2. (6.6)

In particular, by considering g(x) = PN (x) and using Eq. (6.4), we have

∥f(x)− fN (x)∥22 ≤ ∥f(x)− PN (x)∥22 =

∫ 1

0

|f(x)− PN (x)|2dx

≤
∫ 1

0

[
ξ

( 12 )
N+1

(N + 1)!2N

]2
dx =

[
ξ

( 12 )
N+1

(N + 1)!2N

]2
. (6.7)

From Eq. (6.7), Eq. (6.5) is established. �

Remark 6.1. From Eq. (6.5), we have

∥f(x)− fN (x)∥2 = O
( 1

(N + 1)!22N+1

)
. (6.8)

So, if N → ∞ then 1
(N+1)!22N+1 → 0, that means fN (x) → f(x). Thus the proposed

method is convergent.
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Theorem 6.3. Suppose that f(x) and fN (x) be the exact solution and approximate
solution of Eq.(5.2), respectively. Also, suppose that the non-linear term satisfies the
Lipschitz condition i.e.

∥zi(x)− ẑiN (x)∥ ≤ Li∥f(x)− fN (x)∥+ αi, i = 1, 2, (6.9)

and

1− |λ1|L1(γ1 + η1)− |λ2|L2(γ2 + η2) > 0. (6.10)

Then, we have the following upper error bound

∥f(x)− fN (x)∥ ≤
θ + |λ1|

(
α1(γ1 + η1) + η1β1

)
+|λ2|

(
α2(γ2 + η2) + η2β2

)
1− |λ1|L1(γ1 + η1)− |λ2|L2(γ2 + η2)

,

(6.11)

where

max |g(x)− gN (x)| = θ,

max |zi(x)| = βi, i = 1, 2,

max |ki(x, y)| = γi, i = 1, 2,

max |ki(x, y)− kiN (x, y)| = ηi, i = 1, 2,

max |ziN (x)− ẑiN (x)| = αi, i = 1, 2. (6.12)

Proof. The approximate solution of Eq. (5.2) can be written as

fN (x) = gN (x)+λ1

∫ 1

0

k1N (x, y)ẑ1N (y)dy+λ2

∫ x

0

k2N (x, y)ẑ2N (y)dy, (6.13)

where gN , k1N , k2N , ẑ1N and ẑ2N are the approximate function of g, k1, k2,N1(x, fN )
and N2(x, fN ) by using Bell polynomials, respectively.
From Eqs. (5.2) and (6.13), we get

f(x)− fN (x) = g(x)− gN (x) + λ1

∫ 1

0

(
k1(x, y)z1(y)− k1N (x, y)

ẑ1N (y)
)
dy + λ2

∫ x

0

(
k2(x, y)z2(y)− k2N (x, y)ẑ2N (y)

)
dy. (6.14)

By using Eq. (6.14), we have

∥f(x)− fN (x)∥ ≤ ∥g(x)− gN (x)∥
+ |λ1|∥k1(x, y)z1(y)− k1N (x, y)ẑ1N (y)∥
+ |λ2|∥k2(x, y)z2(y)− k2N (x, y)ẑ2N (y)∥. (6.15)
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By using Eq. (6.9), for i = 1, 2, we have

∥ki(x, y)− zi(y)− kiN (x, y)ẑiN (y)∥ ≤ ∥ki(x, y)∥∥zi(y)− ẑiN (y)∥

+ ∥ki(x, y)− kiN (x, y)∥
(
∥zi(y)− ẑiN (y)∥+ ∥zi(y)∥

)
≤ ∥ki(x, y)∥

(
Li∥f(x)− fN (x)∥+ αi

)
+ ∥ki(x, y)− kiN (x, y)∥

(
Li∥f(x)− fN (x)∥+ αi + ∥zi(y)∥

)
.

By using notation (6.12), we get

∥ki(x, y)− zi(y)− kiN (x, y)ẑiN (y)∥ ≤ αi(γi + ηi) + ηiβi

+ Li(γi + ηi)∥f(x)− fN (x)∥. (6.16)

By using Eqs. (6.15) and (6.16) and notation (6.12), we get(
1− |λ1|L1(γ1 + η1)−|λ2|L2(γ2 + η2)

)
∥f(x)− fN (x)∥ ≤ θ

+ |λ1|
(
α1(γ1 + η1) + η1β1

)
+ |λ2|

(
α2(γ2 + η2) + η2β2

)
.

So, by using assumption (6.10), Eq. (6.11) is proved. �

7. Numerical Example

In this section, we solve some examples by using proposed method to show accuracy
and efficiency of this method. Exact solution of these examples are available. The
exact solution and approximate solution at the selected point on the interval [0, 1], are
reported in tables. Comparing exact solution with approximate solution shows that
this method is very accurate. Also, for comparing proposed method with previous
method, we use L2-norms of errors that is calculated as follows

E2 =
(∫ 1

0

|f(x)− fN (x)|2dx
) 1

2

, x ∈ [0, 1]. (7.1)

The following examples have been tested.
For first example, in Eq. (1.1), let λ2 = 0 and we get the nonlinear Fredholm integral
equation.

Example 7.1. Consider the following nonlinear Fredholm integral equation

f(x) = sin(πx) +
1

5

∫ 1

0

sin(πy) cos(πx)f3(y)dy, x ∈ [0, 1]. (7.2)

The exact solution of this equation is f(x) = sin(πx) + 20−
√
391

3 cos(πx).
Table 1 shows the comparison between the exact solution and approximate solution
obtained by proposed method for different values of N . Also, in this table we compare
proposed method with modification of hat functions method (MHFs) [16] for different
values ofm. Moreover, L2-norm of error obtained by the present method are compared
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Table 1. Numerical results of Example 7.1.

xi Exact solution MHFs method Present method
m=8 m=16 N=4 N=5

0.0 0.0754267 0.0750345 0.0753865 0.0753307 0.0759277
0.1 0.3807520 0.3803265 0.3807220 0.3798065 0.3798065
0.2 0.6488067 0.6486153 0.6487845 0.6485490 0.6485824
0.3 0.8533517 0.8528618 0.8533130 0.8531290 0.8532638
0.4 0.9743646 0.9743778 0.9743167 0.9738160 0.9739685
0.5 1.0000000 1.0000000 1.0000000 0.9995789 0.9995756
0.6 0.9277484 0.9277352 0.9277963 0.9280825 0.9279098
0.7 0.7646823 0.7651722 0.7647210 0.7656931 0.7655258
0.8 0.5267638 0.5269552 0.5267860 0.5274741 0.5274391
0.9 0.2372820 0.2377075 0.2373120 0.2371867 0.2371673
1.0 -0.0754266 -0.0750350 -0.0753870 -0.0727086 -0.0731506

Table 2. Comparison of the errors E2 of Example 7.1.

Methods E2

Hat functions method [1]
m=8 3.4e-3
m=16 9.9e-4

Triangular functions methods [14]
m=8 9.9e-3
m=16 2.5e-3

Present method
N=4 6.6e-4
N=5 5.8e-4

with the rationalized hat functions method [1] and triangular functions method [14]
in Table 2.

For second example, in Eq. (1.1), let λ1 = 1 and λ2 = 1, then we get the Fredholm-
Volterra integral equation.

Example 7.2. Consider the following linear Fredholm-Volterra integral equation

f(x) =− x4 − x3 + 12x2 − x− 5 +

∫ x

0

(x− y)f(y)dy

+

∫ 1

0

(x+ y)f(y)dy, x ∈ [0, 1]. (7.3)

The exact solution of this equation is f(x) = 12x2 + 6x.
Table 3 shows the comparison between the exact solution and approximate solution
obtained by proposed method for different values of N . Also, in this table we compare
proposed method with modification of hat functions method (MHFs) [16] for different
values ofm. Moreover, L2-norm of error obtained by the present method are compared
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Figure 1. Absolute value of errors for Example 7.1 with N = 4, 5.
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Table 3. Numerical results of Example 7.2.

xi Exact solution MHFs method Present method
m=8 m=16 N=4 N=5

0.0 0.000 0.001326 -0.000083 0.0000135 -0.0007507
0.1 0.720 0.7191535 0.7199322 0.7200158 0.7190989
0.2 1.680 1.6786887 1.6799324 1.6800184 1.6789492
0.3 2.880 2.8784452 2.8799170 2.8800212 2.8787923
0.4 4.320 4.3184184 4.3198861 4.3200241 4.3186265
0.5 6.000 5.9974416 5.9998395 6.0000268 5.9984601
0.6 7.920 7.9178431 7.9198500 7.9200290 7.9183138
0.7 10.08 10.077287 10.079844 10.0800303 10.0782247
0.8 12.48 12.476939 12.479823 12.4800301 12.4782502
0.9 15.12 15.116792 15.119784 15.1200275 15.1184717
1.0 18.00 17.995680 17.999729 18.0000219 17.9989970

with the rationalized hat functions method [1] and triangular functions method [14]
in Table 4.

For third example, in Eq. (1.1), let λ1 = 0, then we get the Volterra integral
equation.

Example 7.3. Consider the following nonlinear Volterra integral equation

f(x) = −e−2x

2
+

3

2
−
∫ x

0

(f2(y) + f(y))dy, x ∈ [0, 1]. (7.4)
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Table 4. Comparison of the errors E2 of Example 7.2.

Methods E2

Hat functions method [1]
m=8 1.4e-1
m=16 3.6e-2

Triangular functions methods [14]
m=8 5.3e-2
m=16 1.8e-2

Present method
N=4 2.4e-5
N=5 1.4e-3

Figure 2. Absolute value of errors for Example 7.2 with N = 4, 5.
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The exact solution of this equation is f(x) = e−x.
Table 5 shows the comparison between the exact solution and approximate solution
obtained by proposed method for different values of N . Also, in this table we compare
proposed method with modification of hat functions method (MHFs) [16] for different
values ofm. Moreover, L2-norm of error obtained by the present method are compared
with the rationalized hat functions method [1] and triangular functions method [14]
in Table 6.

Example 7.4. Consider the following nonlinear Volterra integral equation

f(x) = −100ex +
1

1 + x
+ 100

∫ x

0

ey
1

f(y)
dy, x ∈ [0, 1]. (7.5)
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Table 5. Numerical results of Example 7.3.

xi Exact solution MHFs method Present method
m=8 m=16 N=4 N=5

0.0 1.0000000 1.0000000 1.0000000 1.0002219 1.0000168
0.1 0.9048374 0.9049781 0.9047612 0.9048110 0.9050053
0.2 0.8187308 0.8181718 0.8186955 0.8187808 0.8188386
0.3 0.7408182 0.7411201 0.7408354 0.7411202 0.7412613
0.4 0.6703200 0.6701145 0.6703539 0.6712819 0.6725037
0.5 0.6065307 0.6065412 0.6065300 0.6091827 00.614477
0.6 0.5488116 0.5488997 0.5487812 0.5552029 0.5719678
0.7 0.4965853 0.4963738 0.4965719 0.5101869 0.5538320
0.8 0.4493290 0.4494735 0.4493376 0.4754428 0.5741903
0.9 0.4065697 0.4064958 0.4065853 0.4527426 0.6536217
1.0 0.3678794 0.3678941 0.3678801 0.4443221 0.8203590

Table 6. Comparison of the errors E2 of Example 7.3.

Methods E2

Hat functions method [1]
m=8 4.6e-3
m=16 1.3e-3

Triangular functions methods [14]
m=8 9.4e-4
m=16 2.3e-4

Present method
N=4 2.3e-3
N=5 3.6e-4

The exact solution of this equation is not available.
Table 7 shows the values of approximate solution obtained by proposed method for
different values of N .

8. Conclusion

In this work, we suggest a numerical method to solve nonlinear Fredholm-Volterra
integral equations based on Bell polynomials. By using this method nonlinear Fredholm-
Volterra integral equations convert to a nonlinear system of algebraic equations which
can be solved by an appropriate numerical method such as Newton’s method. Fur-
thermore, we established the proposed method is convergent. Some examples are
included to show accuracy and efficiency of the proposed method. The comparison
of the results achieved by the present method with the exact solution and the other
methods reveals that the method is very effective.
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Figure 3. Absolute value of errors for Example 7.3 with N = 4, 5.
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Table 7. Numerical results of Example 7.4.

xi N=4 N=5 N=6
0.1 -109.5048299993 -109.5072406720 -109.5074585361
0.2 -121.1045297108 -121.1054499714 -121.1054869563
0.3 -133.9162866472 -133.9146524248 -133.9146974057
0.4 -148.0678315943 -148.0659705330 -148.0661621869
0.5 -163.7032141390 -163.7031988128 -163.7032986978
0.6 -180.9828026704 -180.9846332075 -180.9839536510
0.7 -200.0832843804 -200.0849004230 -200.0821913311
0.8 -221.1976652651 -221.1967871903 -221.1897872222
0.9 -244.5352701253 -244.5330694549 -244.5174283539
0.91 -246.999853847 -246.9978724886 -246.9809939751
0.93 -252.003387037 -252.0021806956 -251.9825596955
0.95 -257.107657720 -257.1077673182 -257.0850062569
0.97 -262.314588540 -262.3166769574 -262.2903243749
0.99 -267.626128252 -267.6309935134 -267.6005378639
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