[1] A. Biswas, Optical Solitons with Time-Dependent Dispersion, Nonlinearity and Attenuation in
a Kerr-Law Media, Int. J. Theor. Phys., 48 (2009), 256-260.
[2] A. Biswas, 1-Soliton solution of the K(m, n) equation with generalized evolution. Phys. Lett.
A., 372(25) (2008), 4601-460.
[3] A. Biswas, 1-Soliton solution of the K(m,n) equation with generalized evolution and timedependent
damping and dispersion. Comput. Math. Appl., 59(8)(2010), 2538-2542.
[4] J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations. Chaos, Solitons Fractals,
30(2006), 700-708.
[5] J.H. He, M.A. Abdou, New periodic solutions for nonlinear evolution equations using Expfunction
method. Chaos, Solitons Fractals, 34(5) (2007), 1421-1429.
[6] M.A. Abdou, The extended F-expansion method and its application for a class of nonlinear
evolution equations. Chaos, Solitons Fractals, 31 (2007), 95-104.
[7] J.L. Zhang, M.L. Wang, Y.M.Wang, Z.D. Fang, The improved Fexpansion method and its
applications. Phys Lett A ,350 (2006), 103-109.
[8] W. Malfliet, Solitary wave solutions of nonlinear wave equations. Am J Phys., 60 (1992), 650-654.
[9] W. Malfliet, W. Hereman, The tanh method. I: Exact solutions of nonlinear evolution and wave
equations. Phys Scr., 54 (1996), 563-568.
[10] A.M. Wazwaz, The tanh method for travelling wave solutions of nonlinear equations. Appl Math
Comput, 154(3) (2004), 713-723.
[11] S.A. El-Wakil, M.A. Abdou, New exact travelling wave solutions using modified extended tanhfunction
method. Chaos, Solitons Fractals, 31(4) (2007), 840-852.
[12] E. Fan, Extended tanh-function method and its applications to nonlinear equations. Phys Lett
A, 277 (2000), 212-218.
[13] A.M. Wazwaz, The extended tanh method for new soliton solutions for many forms of the
fifth-order KdV equations. Appl Math Comput., 184(2) (2007), 1002-1014.
[14] A.M. Wazwaz, The tanh method and the sine–cosine method for solving the KP-MEW equation.
Int J Comput Math., 82(2) (2005), 235-246.
[15] A.M. Wazwaz, A sine-cosine method for handling nonlinear wave equations. Math Comput
Model, 40 (2004), 499-508.
[16] A. Bekir, New solitons and periodic wave solutions for some nonlinear physical models by using
the sine–cosine method. Phys Scr., 77(4) (2008), 501-504.
[17] E. Fan, H. Zhang, A note on the homogeneous balance method. Phys Lett A., 246 (1998),
403-406.
[18] M.L Wang, Exact solutions for a compound KdV-Burgers equation. Phys Lett A., 213 (1996),
279-287.
[19] Z.S. Feng, The first integral method to study the Burgers-KdV equation. J Phys A: Math Gen.,
35 (2002), 343.
[20] M. Eslami, B. Fathi Vajargah, M. Mirzazadeh, A. Biswas, Application of first integral method
to fractional partial differential equations, Indian Journal of Physics 88(2), (2014), 177-184.
[21] Mohammad Mirzazadeh, Mostafa Eslami, Exact solutions of the Kudryashov-Sinelshchikov
equation and nonlinear telegraph equation via the first integral method, Nonlinear Analysis
Modelling and Control, 4(17) (2012), 481-488.
[22] Li Zitian, Dai Zhenge, Abundant new exact solutions for the (3+1)-dimensional Jimbo–Miwa
equation, J. Math. Anal. Appl. 361 (2010), 587-590.
[23] A. H. Bhrawy, M. A. Abdelkawy, Anjan Biswas,Topological Solitons and Cnoidal waves to a
few nonlinear wave equations in theoretical physics, Indian Journal of Physics. 87(11) (2013),
1125-1131.
[24] Laila Girgis, Daniela Milovic, Swapan Konar, Ahmet Yildirim, Hossein Jafari, Anjan Biswas ,
Optical Gaussons in birefringent fibers and DWDM system with Inter-Modal Romanian Reports
in Physics, 64(3) (2012), 663-671.
[25] C. Masood Khalique, Anjan Biswas, A lie symmetry approach tononlinear Schr¨odinger’s equation
with non-kerrlaw nonlinearity, Communications in Nonlinear Science and Numerical Simulation,
14(12) (2009), 4033-4040.
[26] M. Eslami, M. Mirzazadeh, Anjan Biswas,Soliton solutions of the resonant nonlinear
Schr¨odinger’s equation in optical fibers with time-dependent coefficients by simplest equation
approach, Journal of Modern Optics, 60(19) (2013), 1627-1636.
[27] Anjan Biswas, Solitary eave solution for the generalized KdV equation with Time-Dependent and
dispersion,Communications in Nonlinear Science and Numerical Simulation, 14(9-10) (2009),
3503-3506.
[28] Mostafa Eslami, Mohammad Mirzazadeh, Topological 1-soliton solution of nonlinear
Schr¨odinger equation with dual-power law nonlinearity in nonlinear optical fibers, The European
Physical Journal Plus, 128(11) (2013),1-7.
[29] A. Nazarzadeh, M. Eslami, M. Mirzazadeh, Exact solutions of some nonlinear partial differential
equations using functional variable method, Pramana, 81(2) (2013), 225-236.