[1] R. Anguelov, Total variation diminishing nonstandard finite difference schemes for conservation laws, J. Math. Comput 51 (2010), 160-166.
[2] R. Anguelov, J. M. Lubuma, Contributions to the mathematics of the nonstandard finite difference method and applications, Numerical Methods for Partial Differential Equations 17 (2001), 518-543.
[3] D. T. Dimitrov, H.V. Kojouharov, Positive and elementary stable nonstandard numerical methods with applications to predator-prey models, Journal of Computational and Applied Mathematics 189 (2006), 98-108.
[4] M. Ehrhardta, R.E. Mickens, A nonstandard finite difference scheme for convection-diffusion equations having constant coefficients, Applied Mathematics and Computation, 219 (2013), 6591-6604.
[5] S. Gottlieb, C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Mathematics of Computation 67 (1998), 73-85.
[6] A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of Computational Physics 49 (1983), 357-393.
[7] W. Hundsdorfer, J. G. Verwer, Numerical Solution of Time-Dependent Advection-DiffusionReaction Equation, Springer (2003).
[8] R.J. LeVeque, Numerical methods for conservation laws, Birkhauser-Verlag, Basel, Boston, Berlin.(1992).
[9] R. E, Mickens, Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore (1994).
[10] Mehdizadeh Khalsaraei, M., An improvement on the positivity results for 2-stage explicit RungeKutta methods, J. Comput. Appl. Math 235 (2010), 137-143.
[11] Mehdizadeh Khalsaraei, M., Khodadoosti, F., 2-stage explicit total variation diminishing preserving Runge-Kutta methods, Computational Methods for Differential Equations 1 (2013), 30-38.
[12] P. L. Roe, Approximate Riemann solvers parameter vectors and difference schemes, J. Comput. Phys. 43 (1981), 357-372.
[13] C. W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput 9 (1988), 1073-1084.