A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

Document Type : Research Paper


University of Maragheh


In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such schemes are free of spurious oscillations around discontinuities. Numerical results for Burger's equation is presented. Comparison of numerical results with a classical difference scheme is given.


[1] R. Anguelov, Total variation diminishing nonstandard finite difference schemes for conservation laws, J. Math. Comput 51 (2010), 160-166.
[2] R. Anguelov, J. M. Lubuma, Contributions to the mathematics of the nonstandard finite difference method and applications, Numerical Methods for Partial Differential Equations 17 (2001), 518-543.
[3] D. T. Dimitrov, H.V. Kojouharov, Positive and elementary stable nonstandard numerical methods with applications to predator-prey models, Journal of Computational and Applied Mathematics 189 (2006), 98-108.
[4] M. Ehrhardta, R.E. Mickens, A nonstandard finite difference scheme for convection-diffusion equations having constant coefficients, Applied Mathematics and Computation, 219 (2013), 6591-6604.
[5] S. Gottlieb, C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Mathematics of Computation 67 (1998), 73-85.
[6] A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of Computational Physics 49 (1983), 357-393.
[7] W. Hundsdorfer, J. G. Verwer, Numerical Solution of Time-Dependent Advection-DiffusionReaction Equation, Springer (2003).
[8] R.J. LeVeque, Numerical methods for conservation laws, Birkhauser-Verlag, Basel, Boston, Berlin.(1992).
[9] R. E, Mickens, Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore (1994).
[10] Mehdizadeh Khalsaraei, M., An improvement on the positivity results for 2-stage explicit RungeKutta methods, J. Comput. Appl. Math 235 (2010), 137-143.
[11] Mehdizadeh Khalsaraei, M., Khodadoosti, F., 2-stage explicit total variation diminishing preserving Runge-Kutta methods, Computational Methods for Differential Equations 1 (2013), 30-38.
[12] P. L. Roe, Approximate Riemann solvers parameter vectors and difference schemes, J. Comput. Phys. 43 (1981), 357-372.
[13] C. W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput 9 (1988), 1073-1084.