On the numerical solution of the Bagley-Torvik equation using the M\"{u}ntz-Legendre wavelet collocation method

Document Type : Research Paper

Authors

1 Digital Marketing Department, Faculty of Administrative and Financial Sciences, Petra University, Jordan.

2 Electronic Marketing and Social Media, Economic and Administrative Sciences Zarqa University, Jordan.

3 Faculty of Business and Communications, INTI International University, 71800 Negeri Sembilan, Malaysia.

4 Department of Marketing, School of Business, The University of Jordan, Amman, Jordan.

5 Faculty of Liberal Arts, Shinawatra University, Thailand.

Abstract

 The main goals of this work are to solve the Bagley–Torvik (BT) equation using an effective scheme and to find its numerical solution. The scheme uses the collocation method based on the Müntz-Legendre (ML) wavelets. To apply the method, after approximating the unknown solution by mapping it to the wavelet space, we replace it in the desired equation and then obtain the residual using the operational matrices of the derivative and the Caputo
fractional derivative (CFD).
Applying the collocation method results in a linear algebraic system. To implement the collocation method, either Chebyshev or Legendre roots serve as collocation points, or uniformly spaced grids are used. The error analysis is investigated, and some numerical examples are presented to show the scheme’s accuracy and effectiveness. Thanks to the flexibility of ML wavelets and the method’s structure, we can sometimes obtain the exact solution.

Keywords

Main Subjects


  • [1] A. Afarideh, F. Dastmalchi Saei, M. Lakestani, and B. N. Saray, Pseudospectral method for solving fractional Sturm-Liouville problem using Chebyshev cardinal functions, Phys. Scr., 96 (2021), 125267.
  • [2] A. Afarideh, F. Dastmalchi Saei, and B. N. Saray, Eigenvalue problem with fractional differential operator: Chebyshev cardinal spectral method, J. Math. Model., 11(2) (2021), 343-355.
  • [3] J. M. Almira, Müntz type theorems, I. Surv. Approx. Theory, 3 (2007), 152–194.
  • [4] B. Alpert, G. Beylkin, R. R. Coifman, and V. Rokhlin, Wavelet-like bases for the fast solution of second-kind integral equations, SIAM J. Sci. Statist. Comput., 14(1) (1993), 159–184.
  • [5] M. Asadzadeh and B. N. Saray, On a multiwavelet spectral element method for integral equation of a generalized Cauchy problem, BIT., 62 (2022), 383-1416.
  • [6] P. Borwein, T. Erdelyi, and J. Zhang,  Müntz systems and orthogonal  Müntz–Legendre polynomials, Trans. Amer. Math. Soc., 342 (1994), 523–542.
  • [7] Y. C¸enesiz, Y. Keskin, and A. Kurnaz, The solution of the Bagley–Torvik equation with the generalized Taylor collocation method, J. Frank. Inst., 347 (2010), 452–466.
  • [8] V. Daftardar Gejji and A. Jafari, Adomian decomposition: A tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301(2) (2005), 508–518.
  • [9] H. Dehestani, Y. Ordokhani, and M. Razzaghi, Fractional-Lucas optimization method for evaluating the approximate solution of the multi-dimensional fractional differential equations, Engin. Comput., 38 (2020), 1–17.
  • [10] K. Diethelm and J. Ford, Numerical solution of the Bagley–Torvik equation, BIT Numer. Math., 42(3) (2002), 490–507.
  • [11] R. Garrappa, On some explicit Adams multistep methods for fractional differential equations, J. Comput. Appl. Math., 229(2) (2009), 392-399.
  • [12] R. Ghasemkhani, M. Lakestani, and S. Shahmorad, Solving fractional differential equations using cubic Hermit spline functions, Filomat, 38(14) (2024), 5161-5178.
  • [13] H. B. Jebreen and F. Tchier, A New Scheme for Solving Multiorder Fractional Differential Equations Based on  Müntz–Legendre Wavelets, complexity., 2021 (2021), 9915551.
  • [14] V. Heller, G. Strang, P. N. Topiwala, and C. Heil, The application of multiwavelet filterbanks to image processing, IEEE Transactions on Image Processing, 8(4) (1999), 548-563.
  • [15] T. Ji and J. Hou, Numerical solution of the Bagley–Torvik equation using Laguerre polynomials, SeMA J., 77(1) (2020), 97–106.
  • [16] S. Kazem, S. Abbasbandy, and S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model., 37(7) (2013), 5498–5510.
  • [17] A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B. V., Amsterdam, 204 (2006).
  • [18] V. S. Krishnasamy and M. Razzaghi, The Numerical Solution of the Bagley–Torvik Equation With Fractional Taylor Method, J. Comput. Nonlinear Dynam., 11(5) (2016), 051010.
  • [19] M. Lakestani, M. Dehghan, and S. Irandoust-Pakchin, The construction of operational matrix of fractional derivatives using B-spline functions, Commun Nonlinear Sci., 17(3) (2012), 1149–1162.
  • [20] C. Leszczynski and M. Ciesielski, A numerical method for solution of ordinary differential equations of fractional order, Parallel Processing and Applied Mathematics, (2002), 695–702.
  • [21] Z. Lin, D. Wang, D. Qi, and L. Deng, A Petrov–Galerkin finite element-meshfree formulation for multi-dimensional fractional diffusion equations, Comput. Mech., 66 (2020), 323–350.
  • [22] Y. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnamica., 24 (1999), 207–233.
  • [23] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press, 2008.
  • [24] S. Mashayekhi and M. Razzaghi, Numerical solution of the fractional Bagley–Torvik equation by using hybrid functions approximation, Math. Methods Appl. Sci., 39(3) (2016), 353–365.
  • [25] P. Mokhtary, Numerical treatment of a well-posed Chebyshev tau method for Bagley–Torvik equation with high order of accuracy, Numer. Algorithms, 72(4) (2016), 875–891.
  • [26] C. H. Müntz, Über den Approximationssatz von Weierstrass, in H. A. Schwarz’s Festschrift, Berlin, (1914), 303312.
  • [27] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, (1999).
  • [28] P. Rahimkhani, Y. Ordokhani, and E. Babolian,  Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations, Numer. Algor., 77(4) (2018), 1283–1305.
  • [29] P. Rahimkhani, Y. Ordokhani, and E. Babolian, Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations, Numer. Algor., 77 (2018), 1283–1305.
  • [30] P. Rahimkhani and Y. Ordokhani, Numerical solution a class of 2D fractional optimal control problems by using 2D Müntz-Legendre wavelets, Optim. Contr. Appl. Met., 39(6) (2018), 1916–1934.
  • [31] S. S. Ray and R. K. Bera, Analytical solution of the Bagley–Torvik equation by Adomian decomposition method, Appl. Math. Comput., 168 (2005), 398–410.
  • [32] M. Rehman and R. A. Khan, A numerical method for solving boundary value problems for fractional differential equations, Appl. Math. model., 36 (2012), 894-907.
  • [33] S. Sabermahani and Y. Ordokhani, A new operational matrix of Müntz-Legendre polynomials and Petrov-Galerkin method for solving fractional Volterra-Fredholm integrodifferential equations, Comput. Methods Differ. Equ., 8(3) (2020), 408–423.
  • [34] B. N. Saray, Abel’s integral operator: sparse representation based on multiwavelets, BIT Numerical Mathematics, 61 (2021), 587–606.
  • [35] B. N. Saray, An effcient algorithm for solving Volterra integro-differential equations based on Alpert’s multiwavelets Galerkin method, J. Comput. Appl. Math., 348 (2019), 453-465.
  • [36] B. N. Saray, Sparse multiscale representation of Galerkin method for solving linear-mixed Volterra-Fredholm integral equations, Math. Method Appl. Sci., 43(5) (2020), 2601–2614.
  • [37] B. N. Saray, M. Lakestani, and M. Dehghan, On the sparse multiscale representation of 2-D Burgers equations by an efficient algorithm based on multiwavelets, Numer. Meth. Part. D. E., 39(3) (2023), 1938-1961.
  • [38] M. Shahriari, B. N. Saray, B. Mohammadalipour, and S. Saeidian, Pseudospectral method for solving the fractional one-dimensional Dirac operator using Chebyshev cardinal functions, Phys. Scr., 98(5) (2023), 055205.
  • [39] J. Shen and Y. Wang, Müntz-Galerkin methods and applicationa to mixed dirichlet-neumann boundary value problems, Siam J. Sci. Comput., 38(4) (2016), 2357–2381.
  • [40] L. Shi, B. N. Saray, and F. Soleymani, Sparse wavelet Galerkin method: Application for fractional Pantograph problem, J. Comput. Appl. Math., 451 (2024), 116081
  • [41] P. Thanh Toan, T. N. Vo, and M. Razzaghi, Taylor wavelet method for fractional delay differential equations, Eng. Comput., 37 (2021). 231–240.
  • [42] P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298.
  • [43] S¸ Yüzbaşi, Numerical solution of the Bagley–Torvik equation by the Bessel collocation method, Math. Meth. Appl. Sci., 36 (2013), 300–312.
  • [44] Y. Zhao, P. Zhu, X. Gu, X. Zhao, and H. Jian, An implicit integration factor method for a kind of spatial fractional diffusion equations, J. Phys.: Conf. Ser., 1324 (2019), 012030.