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Abstract

The main goals of this work are to solve the Bagley-Torvik (BT) equation using an effective scheme and to find
its numerical solution. The scheme uses the collocation method based on the Müntz-Legendre (ML) wavelets. To

apply the method, after approximating the unknown solution by mapping it to the wavelet space, we replace it in

the desired equation and then obtain the residual using the operational matrices of the derivative and the Caputo
fractional derivative (CFD).

Applying the collocation method results in a linear algebraic system. To implement the collocation method, either

Chebyshev or Legendre roots serve as collocation points, or uniformly spaced grids are used.
The error analysis is investigated, and some numerical examples are presented to show the scheme’s accuracy and

effectiveness. Thanks to the flexibility of ML wavelets and the method’s structure, we can sometimes obtain the

exact solution.
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1. Introduction

Engineering and other disciplines have seen a growing utilization of fractional calculus for explaining various physical
phenomena. Various equations involving fractional derivatives have been extensively studied, leading to the emergence
of numerous mathematical algorithms to solve them, including the wavelet spectral element [5], the wavelet method [40,
41], Adomian decomposition [8], the finite element-meshfree method [21], multi-step methods [11], implicit integration
factor method [44], cubic Hermit spline method [12], Müntz-Legendre Petrov-Galerkin method [33], among others.

In [5], the authors established the necessary and sufficient conditions for the equation

cDα
a+(x)(t) = f [t, x(t), cDα1

a+(x)(t), · · · , cDασ

a+ (x)(t)], t ∈ [a, b],

x(κ)(a) = bκ, bκ ∈ R, κ = 0, 1, · · · , n− 1,

to admit a unique solution. Additionally, an algorithm was presented to reduce the computational cost using the
wavelet properties [5]. Bin Jebreen et al. [13] successfully solved the fractional Cauchy problem using the wavelet
collocation technique. The study of multi-order fractional differential equations (FDEs) was conducted in [16], where
the Galerkin method was applied, using fractional-order Legendre functions as bases. In [9], multi-order FDEs were
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investigated via the fractional-Lucas optimization method. For further studies on numerical method for FDEs, see
[1, 2, 38].

The objective of this paper is to introduce an effective algorithm for solving a well-known fractional differential
equation, known as the BT equation:

ax′′(t) + bcDβ
0 (x)(t) + cx(t) = f(t), β = 3/2, 0 ≤ t ≤ 1, (1.1)

with initial conditions

x(0) = x0, x′(0) = x1, (1.2)

where a ̸= 0, b, and c are constants, and cDβ
0 denotes the Caputo fractional derivative

cDβ
0 (x)(t) =

1

Γ(κ− β)

∫ t

0

x(κ)(z)dz

(t− z)β−κ+1
, κ = −[−β]. (1.3)

This equation arises in modeling a rigid plate bounded by a Newtonian fluid, first introduced by Torvik and Bagley [42].
They obtained notable results, showing that the interior oscillations of a rigid plate immersed in a Newtonian fluid do
not establish a relationship between a retarding force and the velocity. Instead, the retarding force is proportional to
the fractional derivative of order 3/2 of the displacement. Their findings suggest that fractional derivatives naturally
emerge while in the study of real material behavior, indicating that their use in constitutive relationships is not
arbitrary.

In [27], a thorough discussion is provided on the existence of a unique solution for this equation under homogeneous
initial conditions. In this work, the fractional derivative is of the Riemann–Liouville types, while homogeneous initial
conditions equip the equation. For nonhomogeneous initial conditions, Diethelm et al. [10] considered the equation
with the Caputo fractional derivative (CFD) and proposed a solution using a fractional linear multi-step method,
reformulating it into a system of fractional differential equations. The existence and uniqueness of the solution were
further examined in [22], while [27] derived the analytical solution as follows:

x(t) =

∫ t

0

K(t− z)f(z)dz, (1.4)

where

K(t) = 1/a

∞∑
i=0

(−1)i

i!

(a
c

)i
t2i+1E

(i)
1/2,2+3i/2

(
−b

a

√
t

)
,

and Ek,l(t) denotes the Mittag–Leffler function. Notably, for general functions f , evaluating this integral analytically
is often impractical, making numerical methods a viable alternative. Yüzbaşi [43] employed the Bessel collocation
method to solve the equation with boundary conditions, while [7] introduced a generalized Taylor collocation method.
Leszczyński et al. [20] reformulated the BT equation into a system of ordinary differential equations linked to Abel-
integral equations, proposing a numerical scheme for its solution. For cases where the source function f is a Heaviside
function, the Adomian decomposition method was applied in [31]. Further studies on solving the BT equation can be
found in [15, 18, 24, 25].

Recent studies show that wavelets effectively solve differential equations and represent various operators [4]. Wavelet
theory comprises two main families: scalar wavelets and multi-wavelets. Unlike scalar wavelets, which rely on a single
generator, multi-wavelets employ multiple generators within a multi-resolution analysis framework [14]. This grants
them advantages such as symmetry, closed-form expressions, high vanishing moments, and orthogonality.

The Alpert multi-wavelet is a well-known multi-wavelet with various applications in image processing and numerical
analysis [4, 34–37]. Another notable class, Müntz-Legendre (ML) wavelets, has recently been applied to fractional
optimal control problems [28], multi-order fractional differential equations [13], and fractional pantograph equations
[30].

After this brief introduction, the organization of the remaining sections will be as follows: Section 2 introduces the
ML wavelets and their properties. Solving the Bagley-Torvik equation using the wavelet collocation method is the
objective of section 3. Additionally, we shall present the error analysis for the method. We conduct several numerical



970 A. A. SHLASH MOHAMMAD, S. I. MOHAMMAD, A. VASUDEVAN, M. TURKI ALSHURIDEH, AND DING NAN

experiments to demonstrate the accuracy and usefulness of the method, in section 4. Finally, brief conclusions are
included in section 5.

2. Müntz-Legendre wavelets

Suppose that the space F (B) is spanned by a sequence of functions {tβn}∞n=0

F (B) :=
∞⋃

n=0

Fn(B) = span{tβn , n = 0, 1, . . .}. (2.1)

where Fn(B) := span{tβ0 , tβ1 , . . . , tβn} and B = {0 = β0 < β1 < . . .} is an increasing sequence [3]. To verify

F (B) = C[0, 1], the condition∑
βn>0

1 + log βn

βn
= ∞, (2.2)

is sufficient, and the condition

lim
n→∞

βn

n logn
= 0, (2.3)

is necessary.
Thus, F (B) is dense in C[0, 1] (the space of continuous functions on [0, 1]). These criteria were introduced by S. N.

Bernstein. It is also worth mentioning that he proposed the existence and uniqueness conditions
∞∑

n=1

1

βn
= ∞, (2.4)

where B = {0 = β0 < β1 < . . .}. This conjecture was verified two years later by Müntz [26]. Note that the sufficient

and necessary conditions for F (B) = L2(0, 1) are specified in [39].
Using the functions {tβn}∞n=0 as bases is not advisable. Consequently, the Müntz-Legendre (ML) functions are

defined to ensure orthogonality and straightforward evaluation.
Assuming that χ represents a simple contour enclosing all zeros of the integrand’s denominator, the ML polynomials

can be expressed in closed form as [6, 39]:

MLn(t;B) :=
1

2πi

∫
χ

n−1∏
k=1

z + βk + 1

z − βk

tk

z − βn
dz, (2.5)

The ML polynomials can then be determined as:

Ln(t;B) =
n∑

k=0

ck,nt
βk , t ∈ [0, 1], (2.6)

where the constant βk are detrmined by βk := {kη : η ∈ R, k = 0, . . . n}, and the sequence {βk}∞k=1 is ascending.
Furthermore, the coefficients ck,n are specified by [6]

ck,n :=

∏n−1
i=0 (βk + βi + 1)∏n
i=0,i̸=k(βk − βi)

. (2.7)

From Theorem 2.4 in [6], it follows that the ML polynomials are orthogonal satisfying:∫ 1

0

Ln′(t)Ln′′(t)dt = δn′,n′′/(βn + βn′′ + 1), (2.8)

where Ln(t) := Ln(t;B).
For the multiplicity parameter ν ∈ N and refinement level s ∈ N0, there exists a sequence of nested subspaces

{Vs}s∈N0 ⊂ L2([0, 1]) spanned by ϕn
s,a (see, multi-resolution analysis (MRA) [23]), i,e.,

Vs = span{ϕn
s,a := ϕn(2s − a) : a ∈ M, n ∈ V}, (2.9)
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in which V := {0, 1, . . . , ν − 1} and M := {0, 1, . . . , 2s − 1}.
Using ML polynomials Ln(t), the ML wavelets defined by [13] as:

ϕn
s,a =

{
2s/2

√
2βn + 1Ln(2

st− a), a
2s ≤ t ≤ a+1

2s ,
0, otherwise.

(2.10)

To approximate a function x ∈ L2[0, 1], we introduces the projection operator Ps : L
2[0, 1] → Vs as:

x(t) ≈ Ps(x)(t) =

2s−1∑
a=0

ν−1∑
n=0

xa,nϕ
n
s,a(t) = XTF(t) ∈ Vs, (2.11)

where [F(t)]aν+n+1,1 := ϕn
s,a(t), and

xa,n = ⟨x, ϕn
s,a⟩ =

∫ 1

0

x(t)ϕn
s,a(t)dt. (2.12)

The following lemma provides error bounds for the approximation (2.11) [29].

Lemma 2.1. Let ν ∈ N and s ∈ N0. Assume that for any ω < ν, x ∈ Hω[0, 1], then

∥x− Ps(x)∥2 ≤ c(2s−1)−ω(ν − 1)−ω∥x(ω)∥2, (2.13)

and for ω′ ≥ 1:

∥x− Ps(x)∥Hω′ ([0,1]) ≤ c(ν − 1)2ω
′− 1

2−ω(2s−1)ω
′−ω∥x(ω)∥2, (2.14)

where Hω([0, 1]) denotes the Sobolev space with norm:

∥x∥Hω([0,1]) =

(
ω∑

i=0

∥x(i)∥22

)1/2

. (2.15)

2.1. Matrix representation of fractional integration. The objective of this subsection is to derive a square
matrix Iβ that represent the fractional integral operator (FIO) numerically. The matrix elements are determined by
approximating the FIO action on the ML wavelet basis functions:

Ps(Iβ
0 )(F(t)) ≈ Iβ(t)F(t), (2.16)

where Iβ
0 denotes the FIO, i.e.,

Iβ
0 (x)(t) :=

1

Γ(β)

∫ t

0

(t− z)β−1x(z)dz, β ∈ R+, 0 ≤ t ≤ 1, (2.17)

whit Γ(β) being the Gamma function.
In the sequel, the piecewise Taylor functions of fractional order (FPTFs) will be introduced to help us calculate the

entries of Iβ , i.e.,

pns,a(t) =

{
tβn , a

2s ≤ t ≤ a+1
2s ,

0, otherwise,
a ∈ M, n ∈ V, s ∈ N0. (2.18)

Let P (t) be the vector function whose (aν+n+1)-th component is pns,a(t). The connection between the ML wavelets
ϕn
s,a(t) and FPTFs is given by:

F(t) = Υ−1P (t), (2.19)

where the transformation matrix Υ has entries:

Υi,j = ⟨Pj(t),Fi(t)⟩ =
∫ 1

0

Fi(t)Pj(t)dt, i, j = 1 : N, N = 2sν. (2.20)

Let W be a ν-dimensional vector whit components {tβn}νn=1. We observe that:

P (t) = [W, . . . ,W ]
T
. (2.21)
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From the definition of the fractional integral operator and known results [17], we have:

Iβ
0 (t

α) =
Γ(α+ 1)

Γ(α+ β + 1)
tα+β . (2.22)

Thus, it follows from (2.18) and (2.22) that

Iβ
0 (Pi)(t) =

Γ(βi + 1)

Γ(βi + β + 1)
xβi+β , i = 1 : N. (2.23)

This leads to the matrix representation:

Iβ
0 (P )(t) = IP,β(t)P (t), (2.24)

where

IP,β(t) =

 Bβ(t) · · · 0
...

. . .
...

0 · · · Bβ(t)

 , (2.25)

whit Bβ(t) := tβK, (satisfying Iβ
0 (W )(t) = Bβ(t)W (t)) and (K)i,j = Γ(βi + 1)/Γ(βi + β + 1), i = j,

(K)i,j = 0, i ̸= j,
i, j = 1 : N.

(2.26)

The fractional integration matrix Iβ(t) is obtained through:

Ps(Iβ
0 )(F(t)) = Ps(Iβ

0 )(Υ
−1P (t))

= Υ−1IP,β(t)P (t)

= Υ−1IP,β(t)ΥF(t). (2.27)

Thus, we derive:

Iβ(t) := Υ−1IP,β(t)Υ. (2.28)

2.2. Matrix representation of CFD. Given β ∈ R+, assume that ACβ([0, 1]) denotes the space of functions such
that

ACβ [0, 1] = {x : [0, 1] → C, & D(β−1)(x) ∈ AC[0, 1]},

where D = d
dt denotes the derivative operator.

For any x(t) ∈ ACβ([0, 1]), we have

cDβ
0 (x)(t) =

1

Γ(κ− β)

∫ t

0

x(κ)(z)dz

(t− z)β−κ+1
=: Iκ−β

0 Dκ(x)(t), (2.29)

where κ = −[−β]. Consequently,

cDβ
0 (z

α−1)(t) =
Γ(α)

Γ(α− β)
tα−β , (α > κ). (2.30)

The goal is to construct a square matrix Dβ satisfying

cDβ
0 (F(t)) ≈ DβF(t). (2.31)

To compute the elements of Dβ , we use cDβ
0 = Iκ−β

0 Dκ (due to the CFD definition) as follows:

cDβ
0 (F(t)) = Iκ−β

0 Dκ(F(t)) ≈ Iκ−β
0 (DκF(t))

= DκIκ−β
0 (F(t)) ≈ DκIκ−β(F(t)).
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Here D represents the matrix form of D (see, e.g., [33]). Thus,

Dβ := DκIκ−β . (2.32)

This approach reduces computational cost by avoiding direct CFD operations on ML wavelets.

3. Wavelet collocation method for the BT equation

The BT equation is:

ax′′(t) + bcD3/2
0 (x)(t) + cx(t) = f(t), 0 ≤ t ≤ 1, (3.1)

with initial conditions

x(0) = x0, x′(0) = x1. (3.2)

To apply the collocation method, the unknown solution is first mapped into the approximation space Vs by using
the operator Ps, i,e.,

x(t) ≈ Ps(x)(t) = XTF(t) := xN (t). (3.3)

The N -dimensional vector X holds the unknowns that require specification.
Inserting xN (t) into the Equation (3.1) gives rise to equation

ax′′
N (t) + bcD3/2

0 (xN )(t) + cxN (t) = f(t), (3.4)

Using operational matrices D3/2 and D, we approximate the functions x′′
N (t), cD3/2

0 (xN )(t), and f(t) through the
projection operator Ps as follows:

x′′
N (t) ≈ Ps(x

′′
N )(t) = XTD2F(t),

cD3/2
0 (xN )(t) ≈ Ps(

cD3/2
0 (xN )(z))(t) = XTD3/2F(t),

f(t) ≈ Ps(f)(t) = FTF(t). (3.5)

Substituting (3.5) into (3.3) yields the residual:

rs(t) :=
(
aXTD2 + bXTD3/2 + cXT − FT

)
F(t). (3.6)

The collocation method aims to minimize rs(t). By selecting collocation points {tn}Nn=1 ∈ [0, 1], the method leads to
a linear system that satisfies rs(tn) = 0. This is equivalent to solving the system

XT
(
aD2 + bD3/2 + cI

)
= FT , (3.7)

and finding the unknown coefficients X. In other words, there is a linear system

AX = F, (3.8)

where A := (aD2 + bD3/2 + cI)T , that must be solved to gain the unknowns. To use the initial conditions, we replace
the first and the second elements of rs(ti) by

rs(t1) := XTF(0)− x0, rs(t2) := XTDF(0)− x1,

respectively.
It is to be noted here that in this study, the collocation points are either chosen as the roots of Chebyshev or

Legendre polynomials, or as uniform points from [0, 1].
More abstractly, let C([0, 1]) → Vs, there is a projection operator QN . To be more precise, the projection QN (x)

maps w into VS such that interpolates it at the points {tN}NN=1 ∈ [0, 1]. As a result, QNrs = 0 can be used instead of
rs(tn). Equivalently, one can write

QN

((
aXTD2 + bXTD3/2 + cXT

)
F(t)

)
= QN

(
FTF(t)

)
. (3.9)
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3.1. Error analysis.

Lemma 3.1. ([17]). For β > 0 and 1 ≤ q ≤ ∞, the operator Iβ
0 is bounded in Lq([0, 1]:

∥Iβ
0 (x)∥q ≤ 1

Γ(β + 1)
∥x∥q. (3.10)

Theorem 3.2. Let rs be the residual defined in (3.6). The error of the presented method for solving the BT equation
(3.1) satisfies:

∥x− xN∥ ≤ C∥r(N+1)
s (t)∥, (3.11)

where xN is the approximate solution and C is a constant.

Proof. Subtracting (3.9) from (3.1) leads to

ax′′(t)− aQN (x′′
N )(t) + bcD3/2

0 (x)(t)− bQN (cD3/2
0 (xN ))(t) + cx(t)− cQN (xN )(t) = f(t)−QN (f)(t). (3.12)

Equivalently, one can write

ax′′(t)− ax′′
N + ax′′

N − aQN (x′′
N )(t) + bcD3/2

0 (x)(t)− bcD3/2
0 (xN )(t) + bcD3/2

0 (xN )(t)

− bQN (cD3/2
0 (xN ))(t) + cx(t)− cxN (t) + cxN (t)− cQN (xN )(t) = f(t)−QN (f)(t). (3.13)

Given eN = x− xN , it is easy to gain the following relation

ae′′N (t) + a (I −QN ) (e′′N )(t) + bcD3/2
0 (eN )(t) + b (I −QN ) (cD3/2

0 (eN ))(t) + ceN (t)

+ c (I −QN ) (eN )(t) = (I −QN ) (f)(t). (3.14)

Considering

rs(x) = axN (t) + bcD3/2
0 (xN )(t) + cxN (t)− f(t), (3.15)

and making some simplifications in Equation (3.14), it is straightforward to reach the relation

ae′′N (t) + bcD3/2
0 (eN )(t) + ceN (t) = (I −QN ) (rs)(t). (3.16)

It follows from (3.16) that

e′′N (t) =
1

a
(I −QN ) (rs)(t)−

b

a
cD3/2

0 (eN )(t)− c

a
eN (t). (3.17)

Taking norms and applying Lemma 3.1:

∥e′′N (t)∥ ≤ c

a
∥eN (t)∥+ 1

a
∥ (I −QN ) (rs)(t)∥+

b

aΓ(3/2)
∥e′′N (t)∥. (3.18)

Letting ρ := 1− b
aΓ(3/2) ≥ 0, we can rewrite (3.18) as follows;

∥e′′N (t)∥ ≤ c

aρ
∥eN (t)∥+ 1

aρ
∥ (I −QN ) (rs)(t)∥. (3.19)

On the other hand, using the Cauchy formula for repeated integration, we have

eN (t) =

∫ t

0

(t− x)e′′N (x)dx. (3.20)

Taking the norm, one can show that

∥eN (t)∥ ≤ M∥e′′N (x)∥. (3.21)

Substituting (3.19) into (3.21), leads to

∥eN (t)∥ ≤ cM

aρ
∥eN (t)∥+ M

aρ
∥ (I −QN ) (rs)(t)∥. (3.22)
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Assuming σ := 1− cM
aρ ≥ 0 and using the interpolation error, one can obtain

∥eN (t)∥ ≤ C∥r(N+1)
s (t)∥, (3.23)

where C = M
aρσ . □

4. Numerical simulations and results

This section includes several illustrative examples to demonstrate the efficacy of the presented scheme. To provide
a comprehensive overview of the method’s effectiveness, absolute errors

eN = |x(t)− xN (t)|,

and L2 error

L2 − error =

(∫ 1

0

|x(t)− xN (t)|2
)1/2

.

may be reported in tables or figures.
To achieve greater accuracy, we elevate precision above 50 digits. All examples were run using Maple and Matlab

softwares (version 2022).

Example 4.1. First, we implement the present method for Equation (3.1) with a = 1, b = 8/17, c = 13/51, x0 = 0,
and x1 = 27/125. Also, we have

f(t) =
t−1/2

89250
√
π

(
48u(t) + 7

√
πtv(t)

)
, 0 < t ≤ 1,

in which

v(t) = 3250t5 − 9425t4 + 264880t3 − 448107t2 + 233262t− 34578,

u(t) = 16000t4 − 32480t3 + 21280t2 − 4746t.

The exact solution mentioned in [18] is equal to

x(t) = x5 − 29

10
t4 +

76

25
t3 − 339

250
t2 +

27

125
t.

To solve this example using the presented method, we can obtain the exact solution by selecting η = 1, N = 6,
and all three collocation points, including Chebyshev roots, Legendre roots, and uniform grids. Figure 1 shows the
accuracy of the present method using η = 1, N = 6, and Legendre roots.

For comparison with existing methods, Table 1 presents absolute errors at different time points. The proposed
scheme provides a highly accurate approximate solution compared to other options.

Example 4.2. For the second example, we consider the Bagley-Torvik Equation (3.1) with:

x′′(t) +
1

2
cD3/2

0 (x)(t) +
1

2
x(t) =

{
8, 0 ≤ t ≤ 1,

0, t > 1,
0 ≤ t ≤ 1, (4.1)

with conditions

x(0) = 1, x′(0) = 0. (4.2)

For this example, the exact solution can be obtained using (1.4).
To compare the performance of different methods, Table 2 presents absolute errors at various time point. The results

demonstrate that our method achieves higher accuracy than existing approaches. Figure 2 illustrates the method’s
precision, showing how the error decreases as N increases. These convergence properties are further confirmed in
Table 3, which includes corresponding CPU times.
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Table 1. The results obtained for Example 4.1 compared to other methods.

Proposed method [43] [32]

t\N 6 8 8 16

0.1 4.00× 10−52 1.08× 10−02 3.60× 10−04 9.13× 10−05

0.2 3.16× 10−51 8.96× 10−03 1.58× 10−03 1.33× 10−04

0.3 8.70× 10−51 3.78× 10−03 1.79× 10−03 1.22× 10−04

0.4 1.58× 10−50 1.44× 10−07 1.63× 10−03 8.99× 10−04

0.5 2.16× 10−50 1.00× 10−03 1.16× 10−03 1.77× 10−05

0.6 2.36× 10−50 6.62× 10−08 5.84× 10−04 5.36× 10−05

0.7 2.03× 10−50 1.26× 10−03 1.27× 10−04 2.15× 10−05

0.8 1.20× 10−50 1.28× 10−03 1.20× 10−04 1.65× 10−06

0.9 2.60× 10−51 2.07× 10−08 5.54× 10−04 1.42× 10−06

Figure 1. The obtained numerical solution and corresponding absolute error for Example 4.1.

Table 2. Assessing the accuracy of the method compared to other methods (Example 4.2).

Presented method [18] [7]

t η = 0.5, N = 16 η = 0.5, N = 16 N = 16

0.1 2.74× 10−12 7.60× 10−10 1.93× 10−06

0.2 4.16× 10−12 1.00× 10−10 4.90× 10−06

0.3 4.98× 10−12 1.00× 10−10 8.40× 10−06

0.4 5.27× 10−12 2.00× 10−10 1.28× 10−05

0.5 5.16× 10−12 7.00× 10−10 2.13× 10−05

0.6 4.63× 10−12 6.00× 10−09 3.16× 10−05

0.7 3.83× 10−12 1.70× 10−08 4.42× 10−05

0.8 2.77× 10−12 4.30× 10−08 5.43× 10−05

0.9 1.49× 10−12 1.01× 10−07 1.22× 10−04

5. Conclusions

This paper, a well-known fractional equation called the BT equation is solved using the collocation method. To
implement the scheme, we first map the unknown solution into the wavelet space using ML wavelets. Then, by
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Table 3. The L2-error for η = 0.5 (Example 4.2).

N = 8 N = 10 N = 12 N = 14 N = 16

Chebyshev nodes L2-error 3.02× 10−05 2.64× 10−06 3.51× 10−08 1.47× 10−10 5.28× 10−13

CPU time 2.531 3.391 4.547 8.718 22.016

Legendre nodes L2-error 6.68× 10−06 1.07× 10−06 1.18× 10−07 4.73× 10−11 3.88× 10−12

CPU time 2.547 3.046 4.547 9.125 19.016

Uniform meshes L2-error 4.00× 10−05 2.15× 10−06 2.07× 10−07 8.60× 10−10 1.54× 10−10

CPU time 2.688 3.110 4.609 8.172 21.062
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Figure 2. The obtained L2–error via different values of N for Example 4.2.

employing the operational matrices of CFD and derivative, we reduced the problem to a linear system of algebraic
equations through the collocation method. We consider various collocation points and solve the problem effectively
and accurately. The illustrated examples show that when the parameter η is selected correctly, the method yields the
exact solution. Otherwise, we can obtain the expected results by increasing the parameter N . Due to the flexibility
of ML wavelets in selecting their basis power and the structure of the presented algorithm, this method has high
potential for solving various fractional equations.
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