In this paper, we analyze the generalized fractional derivative with two parameters for fourth-order Sturm-Liouville problems. These parameters are $\alpha$({\em the fractional order}) and $\rho$ ({\em a real number}). In the following, we discuss five different forms of Sturm--Liouville problems, which are solved using the $\rho-$Laplace transform.
[1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2013), 57–66.
[2] A. Afarideh, F. Dastmalchi Saei, M. Lakestani, and B. Nemati Saray, Pseudospectral method for solving fractional Sturm-Liouville problem using Chebyshev cardinal functions, Physica Scripta. IOP Publishing, 96(12) (2021), 125267.
[3] M. A. AL-Gwaiz, Sturm-Liouville theory and its applications, Springer-verlage, London, 2008.
[4] Q. M. AL-Mdallal, T. Abdeljawad, and M. A. Hajji, Theorical and Computational prespectives on eigenvalues of fourth-order fractional Sturm–Liouville problem, International Journal of Computer Science, 95(8) (2017), 1548–1564.
[5] F. Jarad, T. Abdeljawad, and D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10(5) (2017), 2607–2619.
[6] F. Jarad and T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Res. Nonlinear Anal., 1(2) (2018), 88–98.
[7] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl. 6(4) (2014), 1–15.
[8] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218(3) (2011), 860–865.
[9] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, New York, 1993.
[10] R. Ozarslan, E. Bas, and D. Baleanu, Representation of solutions for Sturm–Liouville eigenvalue problems with generalized fractional derivative,
[11] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic, New York, 1974.
[12] I. Podlubny, Fractional differential equations, Academic, New York, 1999.
[13] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, 198 (1998).
[14] B. Ronald Guenther, J. W. Lee, Sturm-Liouville Problems: Theory and Numerical Implementation, CRC Press, (2018).
[15] S. Kilbas, O. Marichev, Fractional integrals and derivatives, Berlin: Gorden and Breach, 1993.
[16] A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs, American Mathematical Society, 121 (2005).
Jafari, M. and Dastmalchi Saei, F. (2025). The $(4\alpha-\rho)$ order Sturm-Liouville problem with generalized fractional derivative. Computational Methods for Differential Equations, 13(4), 1250-1259. doi: 10.22034/cmde.2024.60925.2604
MLA
Jafari, M. , and Dastmalchi Saei, F. . "The $(4\alpha-\rho)$ order Sturm-Liouville problem with generalized fractional derivative", Computational Methods for Differential Equations, 13, 4, 2025, 1250-1259. doi: 10.22034/cmde.2024.60925.2604
HARVARD
Jafari, M., Dastmalchi Saei, F. (2025). 'The $(4\alpha-\rho)$ order Sturm-Liouville problem with generalized fractional derivative', Computational Methods for Differential Equations, 13(4), pp. 1250-1259. doi: 10.22034/cmde.2024.60925.2604
CHICAGO
M. Jafari and F. Dastmalchi Saei, "The $(4\alpha-\rho)$ order Sturm-Liouville problem with generalized fractional derivative," Computational Methods for Differential Equations, 13 4 (2025): 1250-1259, doi: 10.22034/cmde.2024.60925.2604
VANCOUVER
Jafari, M., Dastmalchi Saei, F. The $(4\alpha-\rho)$ order Sturm-Liouville problem with generalized fractional derivative. Computational Methods for Differential Equations, 2025; 13(4): 1250-1259. doi: 10.22034/cmde.2024.60925.2604