In this paper, we analyze the generalized fractional derivative with two parameters for fourth-order Sturm-Liouville problems. These parameters are $\alpha$({\em the fractional order}) and $\rho$ ({\em a real number}). In the following, we discuss five different forms of Sturm--Liouville problems, which are solved using the $\rho-$Laplace transform.
Jafari, M. and Dastmalchi Saei, F. (2025). The $(4\alpha-\rho)$ order Sturm-Liouville problem with generalized fractional derivative. Computational Methods for Differential Equations, 13(4), 1250-1259. doi: 10.22034/cmde.2024.60925.2604
MLA
Jafari, M. , and Dastmalchi Saei, F. . "The $(4\alpha-\rho)$ order Sturm-Liouville problem with generalized fractional derivative", Computational Methods for Differential Equations, 13, 4, 2025, 1250-1259. doi: 10.22034/cmde.2024.60925.2604
HARVARD
Jafari, M., Dastmalchi Saei, F. (2025). 'The $(4\alpha-\rho)$ order Sturm-Liouville problem with generalized fractional derivative', Computational Methods for Differential Equations, 13(4), pp. 1250-1259. doi: 10.22034/cmde.2024.60925.2604
CHICAGO
M. Jafari and F. Dastmalchi Saei, "The $(4\alpha-\rho)$ order Sturm-Liouville problem with generalized fractional derivative," Computational Methods for Differential Equations, 13 4 (2025): 1250-1259, doi: 10.22034/cmde.2024.60925.2604
VANCOUVER
Jafari, M., Dastmalchi Saei, F. The $(4\alpha-\rho)$ order Sturm-Liouville problem with generalized fractional derivative. Computational Methods for Differential Equations, 2025; 13(4): 1250-1259. doi: 10.22034/cmde.2024.60925.2604