The $(4\alpha-\rho)$ order Sturm-Liouville problem with generalized fractional derivative

Document Type : Research Paper

Authors

1 Department of Science, Payame Noor University, Tehran, Iran.

2 Department of Mathematics Faculty of Science Tabriz Branch, Islamic Azad University, Tabriz, Iran.

Abstract

In this paper, we analyze the generalized fractional derivative with two parameters for fourth-order Sturm-Liouville problems. These  parameters are $\alpha$({\em the fractional order}) and $\rho$ ({\em a real number}). In the following,  we discuss five different forms of Sturm--Liouville problems, which are solved using the $\rho-$Laplace transform.

Keywords

Main Subjects


  • [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2013), 57–66.
  • [2] A. Afarideh, F. Dastmalchi Saei, M. Lakestani, and B. Nemati Saray, Pseudospectral method for solving fractional Sturm-Liouville problem using Chebyshev cardinal functions, Physica Scripta. IOP Publishing, 96(12) (2021), 125267.
  • [3] M. A. AL-Gwaiz, Sturm-Liouville theory and its applications, Springer-verlage, London, 2008.
  • [4] Q. M. AL-Mdallal, T. Abdeljawad, and M. A. Hajji, Theorical and Computational prespectives on eigenvalues of fourth-order fractional Sturm–Liouville problem, International Journal of Computer Science, 95(8) (2017), 1548–1564.
  • [5] F. Jarad, T. Abdeljawad, and D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10(5) (2017), 2607–2619.
  • [6] F. Jarad and T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Res. Nonlinear Anal., 1(2) (2018), 88–98.
  • [7] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl. 6(4) (2014), 1–15.
  • [8] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218(3) (2011), 860–865.
  • [9] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, New York, 1993.
  • [10] R. Ozarslan, E. Bas, and D. Baleanu, Representation of solutions for Sturm–Liouville eigenvalue problems with generalized fractional derivative,
  • [11] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic, New York, 1974.
  • [12] I. Podlubny, Fractional differential equations, Academic, New York, 1999.
  • [13] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, 198 (1998).
  • [14] B. Ronald Guenther, J. W. Lee, Sturm-Liouville Problems: Theory and Numerical Implementation, CRC Press, (2018).
  • [15] S. Kilbas, O. Marichev, Fractional integrals and derivatives, Berlin: Gorden and Breach, 1993.
  • [16] A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs, American Mathematical Society, 121 (2005).