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Abstract

In this paper, we analyze the generalized fractional derivative with two parameters for fourth-order Sturm–Liouville

problems. These parameters are α(the fractional order) and ρ (a real number). In the following, we discuss five
different forms of Sturm–Liouville problems, which are solved using the ρ−Laplace transform.
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1. Introduction

Sturm-Liouville problems (SLPs) or eigenvalue problems for ordinary and partial differential equations are part of
the foundation of classical applied mathematics and mathematical physics, and were introduced about 170 years ago.
The SLPs arise naturally in solving technical problems in engineering, physics, and, more recently, in biology and
the social sciences. Examples include accurate estimates of the decay (or growth rates) of solutions resulting from
heat conduction, concentration analyses, flows in porous media, etc. For vibration problems, they give fundamental
frequencies and overtones of musical instruments. Eigenvalue problems are important for determining the critical
mass for nuclear reactions in a given geometry and arise naturally in optimization and in the calculus of variations
[2, 14, 16].

Based on the idea of a fractional derivative, fractional calculus extends the scope of classical calculus. In a letter to

Leibniz, L’Hôpital first introduced the idea of a derivative by asking how dnf
dxn could be defined in the case where n = 1

2 .
The concept of fractional derivative has been defined in a number of ways, and new definitions are continuously being
proposed. The definitions of a fractional derivatives by Riemann-Liouville, Gerbashian-Caputo, Grunwald-Letnikov,
and Rich-Fisher are the most widely used ones.

Due to the rapid spread of the theory of fractional derivatives and the importance of Sturm-Liouville problems in
differential equations, serious studies have been carried out in this area, which have led to significant results. It is
important to remember that fractional Sturm-Liouville problems (FSLPs) have been thoroughly studied over the past
few decades. The FSLPs arise in many areas, including mechanics, electricity, biology, chemistry, control theory, and
economics [3, 4, 9, 11, 12, 15].

In this study, fourth-order Sturm-Liouville problems are considered in five different forms with a new generalized
fractional derivative (GFSL). This is a fractional derivative with two parameters. The parameters are α, the fractional
order, and ρ, a real number. As we will see shortly, α is used to change the structure of the solutions, while ρ is only
used to move them.

Below, we find the eigenvalues and eigenfunctions of the problems. Furthermore, we observe that when α tends to
1, no matter what ρ is, all solutions agree with each other. On the other hand, if both α and ρ tend to 1, the solutions
correspond to solving a fourth-order Sturm-Liouville problem.
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The outline of this paper is as follows. In section 2, we discuss those concepts and results from the theory of
generalized fractional derivatives that will be used in our main results. In the third section, we find solutions to five
different forms of GFSL problems, and then we provide analytic solutions to these problems. Finally, we present a
brief conclusion that describes our achievements.

2. Preliminaries

Definition 2.1. [13]. Suppose that α denotes a positive real number and a positive integer, such that n − 1 ≤ α <
n, n ∈ N. Then, we define the Riemann–Liouville fractional derivative of a function f by

aD
α
t f(t) =

1

Γ(n− α)
(
d

dt
)n

∫ t

a

(t− τ)n−α−1f(τ)dτ.

Definition 2.2. [13]. Let α and n be as in the previous definition. For a function f , we define the Caputo fractional
derivative by

C
a Dα

t f(t) =
1

Γ(n− α)

∫ t

a

(t− τ)n−α−1f (n)(τ)dτ.

Definition 2.3. [13]. Given z, β ∈ C and α satisfying ℜ(α) > 0, we define the two-parameter Mittag–Leffler function
by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
. (2.1)

Definition 2.4. [8]. Suppose that α ∈ C, ℜ(α) > 0, and ρ ∈ R+. For a function f , we define the generalized left and
right fractional integrals of order α by

aI
α,ρ
t f(t) =

1

Γ(α)

∫ t

a

( tρ − τρ

ρ

)α−1

f(τ)
dτ

τ1−ρ
, (2.2)

and

tI
α,ρ
b f(t) =

1

Γ(α)

∫ b

t

(τρ − tρ

ρ

)α−1

f(τ)
dτ

τ1−ρ
, (2.3)

respectively.

Definition 2.5. [7]. We define the generalized left and right fractional derivatives of f , in the sense of Riemann–
Liouville, by

aD
α,ρ
t f(t) = γn

aI
n−α,ρ
t f(t) =

γn

Γ(n− α)

∫ t

a

( tρ − τρ

ρ

)n−α−1

f(τ)
dτ

τ1−ρ
, (2.4)

and

tD
α,ρ
b f(t) = (−γ)ntI

n−α,ρ
b f(t) =

(−γ)n

Γ(n− α)

∫ b

t

(τρ − tρ

ρ

)n−α−1

f(τ)
dτ

τ1−ρ
, (2.5)

respectively. In these definitions, ρ > 0, γ = t1−ρ d
dt and n− 1 ≤ α < n.

Definition 2.6. [5]. We define the generalized left and right fractional derivatives of f , in the sense of Caputo, by

C
a Dα,ρ

t f(t) = aI
n−α,ρ
t γnf(t) =

1

Γ(n− α)

∫ t

a

( tρ − τρ

ρ

)n−α−1

γnf(τ)
dτ

τ1−ρ
, (2.6)

and

C
t Dα,ρ

b f(t) = tI
n−α,ρ
b (−γ)nf(t) =

1

Γ(n− α)

∫ b

t

(τρ − tρ

ρ

)n−α−1

(−γ)nf(τ)
dτ

τ1−ρ
, (2.7)

respectively. Here ρ ∈ R+, γ = t1−ρ d
dt and α ∈ C,ℜ(α) > 0.
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In this definition, if ρ = 1 we obtain the Caputo fractional derivative, and if ρ → 0, we obtain the Caputo–Hadamard
fractional derivative.

Theorem 2.7. [6] For a function f : [0,∞] → R, define the ρ-Laplace transform by

Lρ{f(t)}(s) =
∫ ∞

0

e−s tρ

ρ f(t)
dt

t1−ρ
, (2.8)

where ρ > 0. Then, the integral converges for any value of s.

Theorem 2.8. [1] Assume that for a function f : [0,∞] → R, the ρ-Laplace transform exists. Then

Lρ{f(t)}(s) = L {f((ρt)
1
ρ )}(s), (2.9)

in which L {f} denotes the Laplace transform of f .

Definition 2.9. [6]. For functions f and g, we define the ρ-convolution by

(f ∗ρ g)(t) =
∫ 1

0

f
(
(tρ − sρ)

1
ρ

)
g(s)

ds

s1−ρ
. (2.10)

Theorem 2.10. [6]. (The ρ-convolution theorem)

Lρ{f ∗ρ g} = Lρ{f}Lρ{g}. (2.11)

Theorem 2.11. [6]. Assume that α > 0, f ∈ ACn
γ [0, a] for every positive number a, and that γkf is of ρ-exponential

order ec
tρ

ρ for each k ∈ {0, 1, . . . , n}. Then

Lρ{(C0 D
α,ρ
t )(t)}(s) = sαLρ{f(t)}(s)−

n−1∑
k=0

sα−k−1
(
γkf

)
(0), (2.12)

where s > c.

Theorem 2.12. [6]. Assume that α > 0, f ∈ ACn
γ [0, a] for every positive number a, and that aI

n−k−α,ρ
t f is of

ρ-exponential order ec
tρ

ρ for each k ∈ {0, 1, . . . , n− 1}. Then

Lρ{(0Dα,ρ
t )(t)}(s) = sαLρ{f(t)}(s)−

n−1∑
k=0

sn−k−1
(
aI

n−k−α,ρ
t f

)
(0), s > c. (2.13)

Theorem 2.13. [6]. Assume that f ∈ ACn−1
γ [0,∞), and that for each i ∈ {0, 1, ..., n − 1}, γif is of ρ-exponential

order ec
tρ

ρ . If γnf is piecewise continuous on [0, T ], then its ρ-Laplace transform exists for s > c, and

Lρ{(γnf)(t)}(s) = snLρ{f(t)}(s)−
n−1∑
k=0

sn−k−1
(
γnf

)
(0). (2.14)

Lemma 2.14. [10]. Suppose that ℜ(α) > 0 and | λ
sα | < 1. Then,

• Lρ{Eα(−λ( t
ρ

ρ )
α)} = sα

s(sα+λ) ,

• Lρ{1− Eα(−λ( t
ρ

ρ )
α)} = λ

s(sα+λ) ,

• Lρ{( t
ρ

ρ )
β−1Eα,β(λ(

tρ

ρ )
α)} = sα−β

(sα−λ) .
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3. The main results

This section aims is to study five different forms of GFSL problems. These are determined by the following fractional
Sturm–Liouville operators.

L1 = −C
0 D2α,ρ

t (C0 D2α,ρ
t ) + q(t),

L2 = −C
0 D2α,ρ

t (γ2) + q(t),

L3 = −0D
2α,ρ
t (tD

2α,ρ
b ) + q(t),

L4 = −C
0 D2α,ρ

t (tD
2α,ρ
b ) + q(t),

L5 = −0D
2α,ρ
t (γ2) + q(t).

Theorem 3.1. Let 0 < α ≤ 1. Consider the GFSL problem

L1y(t) = −C
0 D2α,ρ

t

(
C
0 D2α,ρ

t y(t)
)
+ q(t)y(t) = λy(t), (3.1)

with initial conditions

y(0) = c1,
(
C
0 Dα,ρ

t y
)
(0) = c2,

(
C
0 D2α,ρ

t y
)
(0) = c3,

(
C
0 Dα,ρ

t (C0 D2α,ρ
t y)

)
(0) = c4. (3.2)

Here, y ∈ ACn
γ [a, b], n ∈ R and q : [0, n] → R is continuous. Then, the solution to the GFSL problem described in

(3.1) and (3.2) is

y(t) = c1E4α,1

(
− λ

( tρ
ρ

)4α
)
+ c2

( tρ
ρ

)α

E4α,α+1

(
− λ

( tρ
ρ

)4α
)

+ c3

( tρ
ρ

)2α

E4α,2α+1

(
− λ

( tρ
ρ

)4α
)
+ c4

( tρ
ρ

)3α

E4α,3α+1

(
− λ(

tρ

ρ
)4α

)
+

∫ t

0

( tρ − τρ

ρ

)4α−1

E4α,4α

(
− λ

( tρ − τρ

ρ

)4α
)
× q(τ)y(τ, λ)

dτ

τ1−ρ
.

(3.3)

Proof. Apply the ρ-Laplace transform to both sides of (3.1). Then, using the initial conditions (3.2) and Theorem
2.11 we can write

− Lρ

{
C
0 D2α,ρ

t

(
C
0 D2α,ρ

t y(t)
)}

+ Lρ{q(t)y(t)} = λLρ{y(t)},

− sαLρ

{
C
0 Dα,ρ

t

(
C
0 D2α,ρ

t y(t)
)}

+ sα−1
(
C
0 Dα,ρ

t (C0 D2α,ρ
t )y

)
(0) + Lρ{q(t)y(t)} = λLρ{y(t)},

− sα
[
sαLρ{C0 D2α,ρ

t y(t)}+ sα−1
(
C
0 D2α,ρ

t y
)
(0)

]
+ sα−1

(
C
0 Dα,ρ

t (C0 D2α,ρ
t y)

)
(0) + Lρ{q(t)y(t)} = λLρ{y(t)},

− s2αLρ{C0 D2α,ρ
t y(t)}+ s2α−1

(
C
0 D2α,ρ

t y
)
(0) + sα−1

(
C
0 Dα,ρ

t (C0 D2α,ρ
t y)

)
(0) + Lρ{q(t)y(t)} = λLρ{y(t)},

− s3αLρ{C0 Dα,ρ
t y(t)}+ s3α−1

(
C
0 Dα,ρ

t y
)
(0) + s2α−1

(
C
0 D2α,ρ

t y
)
(0) + sα−1

(
C
0 Dα,ρ

t (C0 D2α,ρ
t y)

)
(0)

+ Lρ{q(t)y(t)} = λLρ{y(t)},

− s4αLρ{y(t)}+ s4α−1y(0) + s3α−1
(
C
0 Dα,ρ

t y
)
(0) + s2α−1

(
C
0 D2α,ρ

t y
)
(0)

+ sα−1
(
C
0 Dα,ρ

t (C0 D2α,ρ
t y)

)
(0) + Lρ{q(t)y(t)} = λLρ{y(t)},

− s4αLρ{y(t)}+ s4α−1c1 + s3α−1c2 + s2α−1c3 + sα−1c4 + Lρ{q(t)y(t)} = λLρ{y(t)},

Lρ{y(t)} = c1
s4α−1

s4α + λ
+ c2

s3α−1

s4α + λ
+ c3

s2α−1

s4α + λ
+ c4

sα−1

s4α + λ
+

1

s4α + λ
Lρ{q(t)y(t)}.

Now, to obtain (3.3), we just need to apply the inverse ρ-Laplace transform to the both sides of the last equation. □
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Theorem 3.2. Let 0 < α ≤ 1. Consider the GFSL problem

L2y(t) = −C
0 D2α,ρ

t

(
γ2y(t)

)
+ q(t)y(t) = λy(t), (3.4)

with initial conditions

y(0) = c5,
(
γy

)
(0) = c6,

(
γ2y

)
(0) = c7,

(
C
0 Dα,ρ

t (γ2y)
)
(0) = c8, (3.5)

in which q(t) and y(t) are as in Theorem 3.1. Then, the solution to the GFSL problem described in (3.4) and (3.5) is
as follows.

y(t) = c8E2α+2,1

(
− λ

( tρ
ρ

)2α+2
)
+ c6

( tρ
ρ

)
E2α+2,2

(
− λ

( tρ
ρ

)2α+2
)

+ c7

( tρ
ρ

)2

E2α+2,3

(
− λ

( tρ
ρ

)2α+2
)
+ c8

( tρ
ρ

)α+2

E2α+2,α+3

(
− λ(

tρ

ρ
)2α+2

)
+

∫ t

0

( tρ − τρ

ρ

)2α+2

E2α+2,2α+2

(
− λ

( tρ − τρ

ρ

)2α+2
)
q(τ)y(τ, λ)

dτ

τ1−ρ
.

(3.6)

Proof. Apply the ρ-Laplace transform to the both sides of (3.4). Then, using the initial conditions (3.5), Theorem
2.11 and Theorem 2.13 we can write

− Lρ

{
C
0 D2α,ρ

t

(
γ2y(t)

)}
+ Lρ{q(t)y(t)} = λLρ{y(t)},

− sαLρ

{
C
0 Dα,ρ

t

(
γ2y(t)

)}
+ sα−1

(
C
0 Dα,ρ

t (γ2y)
)
(0) + Lρ{q(t)y(t)} = λLρ{y(t)}.

Using the Laplace transform,

− sα
[
sαLρ{γ2y(t)}+ sα−1

(
γ2y

)
(0)

]
+ sα−1

(
C
0 Dα,ρ

t (γ2y)
)
(0) + Lρ{q(t)y(t)} = λLρ{y(t)},

− s2αLρ{γ2y(t)}+ sα−1
(
C
0 Dα,ρ

t (γ2y)
)
(0) + sα−1

(
γ2y)

)
(0) + Lρ{q(t)y(t)} = λLρ{y(t)},

− s2α
[
s2Lρ{y(t)} − s

(
γ0y

)
(0)−

(
γy

)
(0)

]
+ s2α−1

(
γ2y

)
(0) + sα−1

(
C
0 Dα,ρ

t (γ2y)
)
(0)

+ Lρ{q(t)y(t)} = λLρ{y(t)},

− s2α+2Lρ{y(t)}+ s2α+1y(0) + s2α
(
γy

)
(0) + s2α−1

(
γ2y

)
(0)

+ sα−1
(
C
0 Dα,ρ

t (γ2y)
)
(0) + Lρ{q(t)y(t)} = λLρ{y(t)},

− s2α+2Lρ{y(t)}+ s2α+1c5 + s2αc6 + s2α−1c7 + sα−1c8 + Lρ{q(t)y(t)} = λLρ{y(t)},

Lρ{y(t)} = c5
s2α+1

s2α+2 + λ
+ c6

s2α

s2α+2 + λ
+ c7

s2α−1

s2α+2 + λ
+ c8

sα−1

s2α+2 + λ
+

1

s2α+2 + λ
Lρ{q(t)y(t)}.

Now, to obtain (3.6), we just need to apply the inverse ρ-Laplace transform to the both sides of the last equation. □

Theorem 3.3. Consider the GFSL problem

L3y(t) = −0D
2α,ρ
t

(
0D

2α,ρ
t y(t)

)
+ q(t)y(t) = λy(t), 0 < α ≤ 1, (3.7)

with initial conditions(
0I

1−α
t y

)
(0) = c9,

(
I 1−α

t 0D
α,ρ
t y

)
(0) = c10,(

I 1−α
t 0D

2α,ρ
t y

)
(0) = c11,

(
I 1−α

t 0D
3α,ρ
t y

)
(0) = c12, (3.8)
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where y ∈ ACn
γ [a, b], n ∈ R and q : [0, n] → R is continuous. Then, the solution to the problem described in (3.7) and

(3.8) is

y(t) = c9

( tρ
ρ

)α−1

E4α,α

(
− λ

( tρ
ρ

)4α
)
+ c10

( tρ
ρ

)2α−1

E4α,2α

(
− λ

( tρ
ρ

)4α
)

+ c11

( tρ
ρ

)3α−1

E4α,3α+1

(
− λ

( tρ
ρ

)4α
)
+ c12

( tρ
ρ

)4α−1

E4α,4α

(
− λ(

tρ

ρ
)4α

)
+

∫ t

0

( tρ − τρ

ρ

)4α−1

E4α,4α

(
− λ

( tρ − τρ

ρ

)4α
)
q(τ)y(τ, λ)

dτ

τ1−ρ
.

(3.9)

Proof. The proof can be completed in the same way as the proof of Theorem 3.1. □

Theorem 3.4. Consider the GFSL problem with initial conditions:

L4y(t) = −C
0 D2α,ρ

t

(
0D

2α,ρ
t y(t)

)
+ q(t)y(t) = λy(t), (3.10)(

0I
1−α
t y

)
(0) = c13,

(
I 1−α

t 0D
α,ρ
t y

)
(0) = c14,(

0D
2α,ρ
t y

)
(0) = c15,

(
C
0 Dα,ρ

t 0D
2α,ρ
t y

)
(0) = c16, (3.11)

where y ∈ ACn
γ [a, b], n ∈ R and q : [0, n] → R is continuous. Then, the solution to the problem described in (3.10)

and (3.11) is

y(t) = c13

( tρ
ρ

)α−1

E4α,α

(
− λ

( tρ
ρ

)4α
)
+ c14

( tρ
ρ

)2α−1

E4α,2α

(
− λ

( tρ
ρ

)4α
)

+ c15

( tρ
ρ

)2α

E4α,2α+1

(
− λ

( tρ
ρ

)4α
)
+ c16

( tρ
ρ

)3α

E4α,3α+1

(
− λ(

tρ

ρ
)4α

)
+

∫ t

0

( tρ − τρ

ρ

)4α−1

E4α,4α

(
− λ

( tρ − τρ

ρ

)4α
)
q(τ)y(τ, λ)

dτ

τ1−ρ
.

(3.12)

Proof. This is the same as the proofs of Theorem 3.1 and Theorem 3.3, and uses Theorem 2.11 and Theorem 2.12. □

Theorem 3.5. Let 0 < α ≤ 1. Consider the GFSL problem

L5y(t) = −0D
2α,ρ
t

(
γ2y(t)

)
+ q(t)y(t) = λy(t), (3.13)

with initial conditions

y(0) = c17,
(
γy

)
(0) = c18,

(
I 1−α

t γ2y
)
(0) = c19,

(
I 1−α

t 0D
α,ρ
t (γ2y)

)
(0) = c20, (3.14)

in which q(t) and y(t) are as in Theorem 3.1. Then, the solution to the GFSL problem described in (3.13) and (3.14)
is as follows.

y(t) = c17E2α+2,1

(
− λ

( tρ
ρ

)2α+2
)
+ c18

( tρ
ρ

)
E2α+2,2

(
− λ

( tρ
ρ

)2α+2
)

+ c19

( tρ
ρ

)α+1

E2α+2,α+2

(
− λ

( tρ
ρ

)2α+2
)
+ c20

( tρ
ρ

)2α+1

E2α+2,2α+2

(
− λ(

tρ

ρ
)2α+1

)
+

∫ t

0

( tρ − τρ

ρ

)2α+1

E2α+2,2α+2

(
− λ

( tρ − τρ

ρ

)2α+2
)
q(τ)y(τ, λ)

dτ

τ1−ρ
.

(3.15)

Proof. The proof can be completed in the same way as the proof of Theorem 3.1. □

Note that the solutions (3.3), (3.6), (3.9), (3.12), and (3.15) correspond to the solution of the following fourth-order
Sturm–Liouville problem in which both α and ρ are equal to 1.
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y(4)(t) + q(t)y(t) = λy(t), (3.16)

y(0) = A, y′(0) = B, y′′(0) = C, y′′′(0) = D, (3.17)

y(t) = AE4,1(−λt4) +BtE4,2(−λt4) + Ct2E4,3(−λt4) +Dt3E4,4(−λt4)

+

∫ t

0

(
t− τ

)3

E4,4

(
− λ(t− τ)4

)
q(τ)y(τ, λ)dτ. (3.18)

Furthermore, it is easy to see that all these representations will be the same when α = 1, regardless of the value of ρ.

4. Results

Now, we consider the homogeneous parts of the problems we have already discussed, and we compare their analytic
solutions. The homogeneous part of (3.1) is

L1y(t) = −C
0 D2α,ρ

t

(
C
0 D2α,ρ

t y(t)
)
= λy(t), 0 < α ≤ 1, (4.1)

y(0) = c1,
(
C
0 Dα,ρ

t y
)
(0) = c2,

(
C
0 D2α,ρ

t y
)
(0) = c3,

(
C
0 Dα,ρ

t (C0 D2α,ρ
t y)

)
(0) = c4. (4.2)

The analytic solution to the problem described in (4.1) and (4.2) is

y(t) = c1E4α,1

(
− λ

( tρ
ρ

)4α
)
+ c2

( tρ
ρ

)α

E4α,α+1

(
− λ

( tρ
ρ

)4α
)

+ c3

( tρ
ρ

)2α

E4α,2α+1

(
− λ

( tρ
ρ

)4α
)
+ c4

( tρ
ρ

)3α

E4α,3α+1

(
− λ

( tρ
ρ

)4α
)
.

(4.3)

The homogeneous part of (3.4) is

L2y(t) =− C
0 D2α,ρ

t

(
γ2y(t)

)
= λy(t), 0 < α ≤ 1, (4.4)

y(0) = c5,
(
γy

)
(0) = c6,

(
γ2y

)
(0) = c7,

(
C
0 Dα,ρ

t (γ2y)
)
(0) = c8. (4.5)

The analytic solution to the problem described in (4.4) and (4.5) is

y(t) = c5E2α+2,1

(
− λ

( tρ
ρ

)2α+2
)
+ c6

( tρ
ρ

)
E2α+2,2

(
− λ

( tρ
ρ

)2α+2
)

+ c7

( tρ
ρ

)2

E2α+2,3

(
− λ

( tρ
ρ

)2α+2
)
+ c8

( tρ
ρ

)α+2

E2α+2,α+3

(
− λ

( tρ
ρ

)2α+2
)
.

(4.6)

The homogeneous part of (3.7) is

L3y(t) = −0D
2α,ρ
t

(
0D

2α,ρ
t y(t)

)
= λy(t), 0 < α ≤ 1, (4.7)(

0I
1−α
t y

)
(0) = c9,

(
I 1−α

t 0D
α,ρ
t y

)
(0) = c10,(

I 1−α
t 0D

2α,ρ
t y

)
(0) = c11,

(
I 1−α

t 0D
3α,ρ
t y

)
(0) = c12. (4.8)

The analytic solution to the problem described in (4.7) and (4.8) can be found as

y(t) = c9

( tρ
ρ

)α−1

E4α,α

(
− λ

( tρ
ρ

)4α
)
+ c10

( tρ
ρ

)2α−1

E4α,2α

(
− λ

( tρ
ρ

)4α
)

+ c11

( tρ
ρ

)3α−1

E4α,3α+1

(
− λ

( tρ
ρ

)4α
)
+ c12

( tρ
ρ

)4α−1

E4α,4α

(
− λ(

tρ

ρ
)4α

)
.

(4.9)



CMDE Vol. 13, No. 4, 2025, pp. 1250-1259 1257

The homogeneous part of (3.10) is

L4y(t) = −C
0 D2α,ρ

t

(
0D

2α,ρ
t y(t)

)
= λy(t), 0 < α ≤ 1, (4.10)(

0I
1−α
t y

)
(0) = c13,

(
I 1−α

t 0D
α,ρ
t y

)
(0) = c14,(

0D
2α,ρ
t y

)
(0) = c15,

(
C
0 Dα,ρ

t 0D
2α,ρ
t y

)
(0) = c16. (4.11)

The analytic solution to the problem described in (4.10) and (4.11) is

y(t) = c13

( tρ
ρ

)α−1

E4α,α

(
− λ

( tρ
ρ

)4α
)
+ c14

( tρ
ρ

)2α−1

E4α,2α

(
− λ

( tρ
ρ

)4α
)

+ c15

( tρ
ρ

)2α

E4α,2α+1

(
− λ

( tρ
ρ

)4α
)
+ c16

( tρ
ρ

)3α

E4α,3α+1

(
− λ(

tρ

ρ
)4α

)
. (4.12)

Finally, the homogeneous part of (3.13) is

L5y(t) = −0D
2α,ρ
t

(
γ2y(t)

)
= λy(t), 0 < α ≤ 1, (4.13)

y(0) = c17,
(
γy

)
(0) = c18,(

I 1−α
t γ2y

)
(0) = c19,

(
I 1−α

t 0D
α,ρ
t (γ2y)

)
(0) = c20, (4.14)

in which q(t) and y(t) are as in Theorem 3.1. The following is the solution to the GFSL problem described in (3.13)
and (3.14).

y(t) = c17E2α+2,1

(
− λ

( tρ
ρ

)2α+2
)
+ c18

( tρ
ρ

)
E2α+2,2

(
− λ

( tρ
ρ

)2α+2
)

+ c19

( tρ
ρ

)α+1

E2α+2,α+2

(
− λ

( tρ
ρ

)2α+2
)
+ c20

( tρ
ρ

)2α+1

E2α+2,2α+2

(
− λ(

tρ

ρ
)2α+1

)
.

5. Conclusion

In this paper, we found integral representations for the solutions of certain fourth-order GFSL problems, and we
obtained their analytic solutions. We could find the eigenfunctions and eigenvalues, and we examined the eigenvalues
with respect to different values of α and ρ. Also, we observed that when α approached 1, the classic solution was
obtained.

Figure 1. Eigenvalue of (4.3):
α=0.9 and c1 = c2 = c3 = c4 = 1.

Figure 2. Eigenvalue of (4.3):
α=1 and c1 = c2 = c3 = c4 = 1.
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Figure 3. Eigenvalue of (4.3):
ρ = 0.8 and c1 = c2 = c3 = c4 = 1.

Figure 4. Eigenfunction of (4.3):
α = 0.75 and ρ = 0.7, while c1 =
c2 = c3 = c4 = 1.

Figure 5. Eigenvalue of (4.6):
α=0.9 and c1 = c2 = c3 = c4 = 1.

Figure 6. Eigenvalue of (4.6):
α=1 and c1 = c2 = c3 = c4 = 1.

Figure 7. Eigenvalue of (4.6):
ρ = 0.8 and c1 = c2 = c3 = c4 = 1.

Figure 8. Eigenfunction of (4.6):
α = 0.75 and ρ = 0.7, while c1 =
c2 = c3 = c4 = 1.
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