Numerical multiscale methods to determine the coefficient in diffusion problems

Document Type : Research Paper

Authors

1 Department of Applied Mathematics, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran 1591634311.

2 Department of Mathematical Sciences, Sharif University of Technology, Tehran 11365-9415, Iran.

3 School of Science, Engineering & Environment, University of Salford, Salford, M5 4WT, UK.

Abstract

Here we study the inverse problem of determining the highly oscillatory coefficient $a^\varepsilon$ in some PDEs of the form $ u^\varepsilon_t - \nabla. (a^\varepsilon(x) \nabla u^\varepsilon)=0$, in a bounded domain $\Omega \subset\mathbb{R}^d $; $\varepsilon$ indicates the smallest characteristic wavelength in the problem ($0 < \varepsilon \ll 1$).
Assume that $g(t, x)$ is given input data for $(t, x) \in (0,T) \times\partial \Omega$  and the associated output is the thermal flux $a^\varepsilon(x)\nabla u(T_0,x)\cdot n(x)$ measured on the boundary at a given time $T_0$.  Due to the ill-posedness of the inverse problem, we reduce the dimension by seeking effective parameters. For the forward solver, we apply either analytic homogenization or some numerical multiscale methods such as the FE-HMM and LOD method.

Keywords

Main Subjects


  • [1] A. Abdulle, D. Arjmand, and E. Paganoni, Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems, C. R. Math. Acad. Sci. Paris, 357 (2019), 545–551.
  • [2] A. Abdulle, D. Arjmand, and E. Paganoni, A parabolic local problem with exponential decay of the resonance error for numerical homogenization, Mathematical Models and Methods in Applied Sciences, 31(13) (2021), 2733–2772.
  • [3] A. Abdulle, D. Arjmand, and E. Paganoni, An elliptic local problem with exponential decay of the resonance error for numerical homogenization, Multiscale Modeling & Simulation, 21(2) (2023), 513–541.
  • [4] A. Abdulle and A. Blasio, A Bayesian Numerical Homogenization Method for Elliptic Multiscale Inverse Problems, SIAM/ASA J. Uncertain. Quantif., 8 (2020), 414–450.
  • [5] A. Abdulle and A. Di Blasio, Numerical homogenization and model order reduction for multiscale inverse problems, Multiscale Model. Simul., 17 (2019), 399–433.
  • [6] A. Abdulle and W. E, Finite difference heterogeneous multi-scale method for homogenization problems, J. Comput. Phys., 191 (2003), 18– 39.
  • [7] A. Abdulle and A. Nonnenmacher, A short and versatile finite element multiscale code for homogenization problems, Comput. Methods Appl. Mech. Engrg., 198 (2009), 2839–2859.
  • [8] D. Arjmand and O. Runborg, A time dependent approach for removing the cell boundary error in elliptic homogenization problems, Journal of Computational Physics, 314(2) (2016), 206–227.
  • [9] D. Arjmand and O. Runborg, Estimates for the upscaling error in heterogeneous multiscale methods for wave propagation problems in locally periodic media, Multiscale Modeling & Simulation, 15(2) (2017), 948–976.
  • [10] L. Beilina, Inverse problems and applications, 2015.
  • [11] A. Bensoussan, J. L. Lions, and G. Papanicolaou, Finite Asymptotic Analysis for Periodic Structures, NorthHolland, Amsterdam, 1978.
  • [12] X. Blanc and C. Le Bris, Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings, Netw. Heterog. Media, 5(1) (2010), 1–29.
  • [13] B. Canuto and O. Kavian, Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal., 32 (2001), 963–986.
  • [14] D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford University Press, Oxford, 1999.
  • [15] D. Colton, H. Engl, A. K. Louis, J. McLaughin, and W. Rundell, Surveys on Solution, Methods for Inverse Problems, Springer-Verlag, Wien, 2000.
  • [16] R. Du and P. Ming, Heterogeneous multiscale finite element method with novel numerical integration schemes, COMMUN. MATH. SCI., 8 (2010), 863–885.
  • [17] B. Engquist, The heterogeneous multi-scale methods, Commun. Math. Sci., 1 (2003), 87–132.
  • [18] C. Frederick and B. Engquist, Numerical methods for multiscale inverse problems, Commun. Math. Sci., 15(2) (2017), 305–328.
  • [19] A. Gloria, Reduction of the resonance error. Part 1: Approximation of homogenized coefficients, Math. Models Methods Appl. Sci., 21(8) (2011), 1601–1630.
  • [20] O. Jecker, Optimization based methods for highly heterogeneous multiscale problems and multiscale methods for elastic waves, No. 7467. EPFL, 2017.
  • [21] P. Ljung, R. Maier, and A. Maalqvist, A space-time multiscale method for parabolic problems, Multiscale Modeling & Simulation, 20(2) (2022), 714–740.
  • [22] A. Maalqvist and A. Persson, Multiscale techniques for parabolic equations, Numer. Math., 138(1) (2018), 191–217.
  • [23] A. Maalqvist and D. Peterseim, Localization of elliptic multiscale problems, Math. Comp., 83(290) (2014), 2583– 2603.
  • [24] A. Maalqvist and D. Peterseim, Numerical homogenization by localized orthogonal decomposition, Vol. 5 of SIAM Spotlights, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2020.
  • [25] P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems, J. AMS, 18(1) (2006), 121– 156.
  • [26] J. Nolen, G. A. Pavliotis, and A. M. Stuart, Multiscale Modelling and Inverse Problems, Inverse Problems, Springer, 18(1) (2010), 1– 32.