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Abstract
Here we study the inverse problem of determining the highly oscillatory coefficient aε in some PDEs of the form

uε
t − ∇.(aε(x)∇uε) = 0, in a bounded domain Ω ⊂ Rd; ε indicates the smallest characteristic wavelength in the

problem (0 < ε� 1). Assume that g(t, x) is given input data for (t, x) ∈ (0, T )× ∂Ω and the associated output is

the thermal flux aε(x)∇u(T0, x) · n(x) measured on the boundary at a given time T0. Because of ill-posedness of

the inverse problem, we reduce the dimension by seeking effective parameters. For forward solver, we apply either
analytic homogenization or some numerical multiscale methods such as FE-HMM and LOD method.
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1. Introduction

Many applications in engineering and technology, such as heat conduction, geoscience and wave scattering, biology,
medical image processing, and so on, necessitate solving inverse problems for partial differential equations [10, 13].
The aim of this overview is to represent how multiscale modeling plays an essential role in solving inverse problems
for differential equations. Here we are going to determine the unknown parameters by matching observed data. Due
to the multiscale structure, the forward problem involves more difficulties such as high level resolution in numerical
computations. Hence the inverse problem is further complicated. We are interested in PDEs that vary on a very fine
scale, as a result of heterogeneity in the medium, for example.

Assume that the microstructure’s nature is known, but it contains an unknown parameter. In this work the inverse
problem of determining the coefficient aε(x) in the following model (1.1) has been investigated, where the superscript ε
denotes the problem’s multiscale nature (characteristic wavelength) and it’s the ratio of scales in the model (0 < ε� 1).

uεt −∇ · (aε(x)∇uε) = f(t, x), in (0, T )× Ω,

uε(0, x) = u0(x), in Ω,

uε(t, x) = g(t, x), on (0, T )× ∂Ω,

(1.1)

where Ω ⊂ Rd is a bounded, open and connected domain with sufficiently smooth boundary ∂Ω and aε(x) = a(x, x/ε) =
(ail(x, x/ε))1≤i,l≤d is a symmetric d× d matrix valued function in Ω, satisfying the following conditions:

i) a(x, y) is Y -periodic in y, where Y = [0, 1]d.
ii) a(x, y) is bounded and uniformly elliptic i.e.,

aε(x)ξ · ξ ≥ α|ξ|2, |aε(x)ξ| ≤ β|ξ|, for some α, β > 0. (1.2)
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In this study, we measure the boundary value (thermal flux) aε∇u(T0) · n|∂Ω at a given fixed time T0 ∈ (0, T ] for
the problem (1.1), with assigning the temperature g(t, x) on ∂Ω. Associated input-output map is introduced as the
operator

Λaε : g 7→ aε∇u(T0) · n|∂Ω. (1.3)

We use the information of measurements from this map to look for the unknown parameter of this fine-scale structure.
In [26], the authors have studied the inverse problem and shown the uniqueness of aε when Λaε is given.

Usually in standard approaches to such these problems, solving the forward problem requires that the meshes to
be refined as possible as to the smallest scale [5].

Solving such high-dimensional problems repeatedly provides a difficult computing challenge that is rarely tractable.
The above multiscale parabolic problem (1.1) is an example showing this difficulties.

In this work, we use the prior assumption of a microscale parametrization m → aε(m, · ), where the parameter m
belongs to an interval [r, s].

Then the form of coefficient aε becomes as follows

aε(m,x) = a(m,x, x/ε)Id, (1.4)

where the Id denotes the d×d identity matrix. The function a(m,x, x/ε) is assumed to be known and the purpose is to
find the unknown parameter m in the microstructure model of diffusion coefficient through some numerical multiscale
methods.

This kind of multiscale inverse problem was originally introduced by C. Frederick and B. Engquist [16], for elliptic
equations. They used numerical homogenization for a class of this problem and also made a connection with the
theoretical results. In present work we have applied this theory for parabolic equations and also developed it for
a wider range of diffusion coefficients. In 2019, A. Abdulle and A. Di Blasio analyzed recovering the whole tensor
of the elliptic multiscale inverse problems in a class of parameterized anisotropic locally periodic multiscale tensors,
aεσ(x) = a(σ(x), x/ε), when the function σ is unknown while the map (σ, y) 7→ a(σ, y) is assumed to be known [5].
Also in 2020, they considered Bayesian numerical homogenization method for elliptic multiscale inverse problems [4].

The outline of this work is as follows. In section 2 we briefly describe the homogenization theory and how to
evaluate the efficient coefficients. We also describe how the inverse problem has been modeled and we addressed the
uniqueness of the solution of the inverse problem. In section 3 the Finite Element Heterogeneous Multiscale Method
(HMM) has been explained and in section 4 we introduce Localized Orthogonal Decomposition method (LOD) also
the convergence of the method as a forward solver has been shown in Figure 4. Both these methods can be applied
when the explicit form of the homogenized coefficient is not available.

It should be mentioned that the approach of HMM emerged from analytical homogenization theory and the analysis
of this method is based on analytical homogenization and therefore requires some assumptions on the coefficient such
as scale separation or periodicity and this is a difference between LOD method and HMM [19, 22]. In section 5 some
examples and numerical results regarding the parameter identification has been forwarded. Eventually some results
are shown in section 6.

2. Multiscale inverse problem

2.1. Homogenized forward model. In classical homogenization theory [12, 25], a positive definite matrix A is
said to be the homogenized matrix for aε(x) = a(x, x/ε), if for any bounded domain Ω ⊂ Rd with C2-boundary the
solutions of the Dirichlet problem (1.1) possess the following convergence property,

uε ⇀ U in W, and aε∇uε ⇀ A∇U, in (L2((0, T )× Ω))d, as ε→ 0, (2.1)

where U is the solution of the Dirichlet problem

Ut −∇ · (A(x)∇U) = f(t, x), in (0, T )× Ω,

U(0, x) = u0(x), in Ω,

U(t, x) = g(t, x), on (0, T )× ∂Ω.

(2.2)
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and W = {v| v ∈ L2(0, T ;H1
0 (Ω)), v′ ∈ L2(0, T ;H−1(Ω))}. The homogenized matrix A is given by [6, 24]:

A(x) =
1

|Y |

∫
Y

a(x, y)(Id +∇yχ)dy, (2.3)

where χ = (χ1, · · · , χd) is given by the solution of the cell problems

−∇y · (a(x, y)∇yχ) = ∇y · a(x, y), y ∈ Y,
i.e.

−
d∑
i=1

∂

∂yi
(

d∑
k=1

aik
∂χj
∂yk

) =

d∑
i=1

∂aij
∂yi

, j = 1, ..., d,

where also χ(x, y) is Y -periodic in y and
∫
Y
χj(x, y)dy = 0.

2.2. Inverse problem. Let Ω be a bounded, open domain in Rd, d ≥ 2, of class C1,1. In the classical theory of
inverse problems, the following Dirichlet problem has been studied as a forward model

ut −∇ · (A∇u) = f(t, x), in (0, T )× Ω,

u(x, 0) = u0(x), in Ω,

u = g, on ∂Ω.

(2.4)

The coefficient A is in general a uniformly positive definite, symmetric, d× d matrix (it means, there exists a positive
α such that for all X, XTAX ≥ α‖X‖2).

From the regularity theory we know that for g ∈ H3/2(∂Ω), this problem has a unique solution u ∈ C1
(
[0, T ];H1(Ω)

)
∩

C
(
[0, T ];H2(Ω)

)
. We define the Dirichlet-to-Neumann map ΛA : C

(
[0, T ];H3/2(∂Ω)

)
→ H1/2(∂Ω) by

ΛA(g) = A∇u · n|∂Ω. (2.5)

The inverse problem is to determine the unknown diffusion coefficient A(x) from the knowledge of map ΛA. To have
the uniqueness of solution for the inverse problem, we consider A(x) to have the form A(x) = a(x)Id, where a(x) is a
scalar-valued function. In addition, we suppose the following regularity assumptions:

a ∈W 1,p(Ω), for some p > 2, when d = 2, (2.6)

or

a ∈ C1,(1/2)+ζ(Ω̄), for some ζ > 0, when d ≥ 3. (2.7)

Theorem 2.1. (Theorem 1.3 in [26]) Let Aj for j = 0, 1 be two functions satisfying conditions (2.6) and (2.7). We
denote by uj the solution of problem (2.4) for A = Aj and also let Λj be the corresponding Dirichlet-to-Neumann map.
Suppose that

Λ0(g) = Λ1(g), in H1/2(∂Ω), for all g ∈ C([0, T ];H3/2(∂Ω)). (2.8)

Then A0 = A1 in Ω.

In this work we study the inverse problem with priori knowledge that diffusion term comes from (1.4). We assume

that the Dirichlet-to-Neumann map, Λ̃ is known on a finite dimension subspace G ⊂ C([0, T ];H3/2(∂Ω)) and look for
the parameter m that solves

min
m
‖Λaε(m,·) − Λ̃‖, (IP ε),

‖.‖ denotes the Frobenius norm. However, this problem is ill-posed and has a large computational cost [16]. To
overcome this problem, we apply some multiscale methods to improve minimization functional (IP ε). We replace the
full inverse problem (IP ε) with an effective inverse problem, that are based on ideas from homogenization theory, as
follows

min
m
‖ΛA(m,·) − Λ̃‖, (IPAnalytic)

where A(m, ·) is corresponding homogenized matrix which obtained by (2.3).
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In [24], this idea has been followed for elliptic equation. Although this reduced formulation is often well-posed and
results in a lower sensitivity to noise, this approach loses some details about microscale features.

It is noteworthy that homogenization convergence (2.1) yields the weak∗ convergence of Λaε to ΛA in H−1/2(∂Ω).
Indeed, for an arbitrary function v ∈ H1(Ω) and v|∂Ω = h we have

〈Λaε(g), h〉 =

∫
Ω

(uεtv + aε∇uε · ∇v)dx, (2.9)

where 〈· , ·〉 is the duality pairing between H−1/2(∂Ω) and H1/2(∂Ω). Now if we apply (2.1), we will obtain

〈Λaε(g), h〉 −→ 〈ΛA(g), h〉 , for all h ∈ H1/2(∂Ω).

It makes sense, therefore, to consider the norm in problem (IPAnalytic) to be the norm of space L(G,H−1/2(∂Ω)).

Before going on, let us try to explain how we estimate L(G,H−1/2(∂Ω))-norm. To apply ΛA in (2.5), we need the
derivative of u on ∂Ω which is not easy to provide, so we use (2.9) instead. Consider a finite dimensional subspace

H ⊂ H1/2(∂Ω) and assume that {g1, · · · , gL} and {h1, · · · , hJ} are bases of G and H, respectively. The matrix [Λ̃ij ]

represents the operator Λ̃, where Λ̃ij = 〈Λ̃(gi), hj〉. Similarly, we may apply same representation for operators ΛA(m,·)
and Λaε(m,·) and then (IP ε) or (IPAnalytic) will give a reasonable estimations for corresponding matrices.

3. FE-HMM

The explicit form of the homogenized coefficient is often unavailable, and therefore we cannot apply direct compu-
tation of macroscopic predictions. This challenge can be removed numerically with some multiscale methods, for this
purpose we will introduce FH-HMM in this section and LOD method in the next. Heterogeneous multiscale method
was first introduced by B. Engquist [15]. In this method a general macroscopic scheme on a macrogrid has been used
to predict the missing macroscopic data from the microscopic model. The effectiveness of HMM is based on its ability
to recover missing macroscale data from microscale models by applying the scale separation technique. Assume that
aε(x) = a(x, x/ε) is Y -periodic in second variable and admits scale separation between slow, x, and fast variables, x/ε.
The aim of the Finite Element Heterogeneous Multiscale Method (FE-HMM) is to obtain the homogenized (coarse)
solution U of (2.2) without directly computing A(x) only by using input data in (1.1). Furthermore, when a sampling
domain has been used, we do not need oscillatory data of (1.1) on the whole of computational domain. There are some
applications of this approach, for instance, in material sciences problems, modern scanning and microscopy techniques
we may only be able to acces to a local domain with fine scale structure, or in geosciences, we require some knowledge
about a landscape, which might be sparsely available rather than a connected domain [7]. The macroscopic solver
for (1.1) is the standard piecewise linear Finite Element Method over a macroscopic triangulation TH with mesh size
H > ε and the time backward Euler scheme. We have the following macroscale weak form for the HMM [7, 23],

((Un − Un−1)/∆t), V ) +B(Un, V ) = (fn, V )−B(gn, V ), for all V ∈ XH ,

where Un in the macroscopic Finite Element space XH , is the solution of the problem, for 1 ≤ n ≤ N , tn = n∆t with

∆t = T/N , fn = 1
∆t

∫ tn+1

tn
f(x, s)ds and gn is Dirichlet boundary condition defined in the same way as fn. Since we

do not have the effective coefficient AHMM explicitly, we evaluate the stiffness matrix

B(W,V ) =

∫
Ω

∇W ·AHMM (x)∇V dx =
∑
K∈TH

∫
K

∇W ·AHMM (x)∇V dx (3.1)

'
∑
K∈TH

|K|∇W ·AHMM (xK)∇V, V,W ∈ XH , (3.2)

where xK is barycenter of K. Each entry of (3.1) is approximated by solving the following cell problem on subdomain
Iδ(xK) := xK ± δ

2I,

−∇ · (aε∇vε) = 0 in Iδ(xK),

vε = V on ∂Iδ(xK).
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A standard Finite Element solver is utilized once more on a triangulation Th of the subdomains. The spacing h < ε is
chosen sufficiently small in order to resolve the microscale. In the same way, wε is calculated as well and then we have

∇W ·AHMM (xK)∇V ' 1

|Iδ|

∫
Iδ

∇wε · aε∇vεdx.

Thus, we can rewrite

B(W,V ) =
∑
K∈TH

|K|
|Iδ|

∫
Iδ

∇wε · aε∇vεdx.

B(gn, V ) is also, evaluated in a same way. Figure 1 shows the macro-micro grid coupling in a typical FEM-HMM
formulation.

Figure 1. An illustration of macro-micro coupled grids used in FE-HMM.

Theorem 3.1. (Theorem 1.1 in [23]) Let

e(HMM) = max
xK∈K,K∈TH

‖A(xK)−AHMM (xK)‖,

where ‖ · ‖ denotes the Euclidean norm. Let U and UHMM be the solution of (2.2) and FE-HMM, respectively. If U
is sufficiently smooth, then there exists a constant C that is independent of ε, δ,H,∆t, such that

‖UNHMM − U(·, T )‖L2(Ω) + ‖UHMM − U‖∗ ≤ C(∆t+H2 + e(HMM)),

‖UNHMM − U(·, T )‖H1(Ω) ≤ C(∆t+H + e(HMM)∆t−1/2),

where ‖ · ‖∗ is the weighted space-time H1 norm that is defined for every V = {V n}Nn=1 with V n ∈ XH for n = 1, ..., N
as

‖V ‖∗ = (

N∑
n=1

∆t‖∇V n‖20)1/2.

This result ensures that UnHMM converge to U(·, tn) as e(HMM) vanishes. This condition can be settled by corollary
1.4. Theorem 1.2 in [23] which states

e(HMM) ≤ C(δ +
ε

δ
).

It’s remarkable that the bound for e(HMM) can be improved to fourth order in terms of ε/δ using the approach [17],
second order in ε/δ using the approach of [11], and arbitrarily high order using [8, 9] and exponentially decaying using
the approaches [1–3].
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Remark 3.2. We denote the solution corresponding to aε(m,x) by UHMM (m) for every parameter m. Also the
estimate of the Dirichlet-to-Neumann map will be shown by ΛHMM (m). By this notation, the inverse problem
(IPAnalytic) is formulated as

min
m
‖ΛHMM (m)− Λ̃‖L(G,H−1/2(∂Ω)), (IPHMM ).

4. Localized Orthogonal Decomposition method

The Localized orthogonal Decomposition (LOD) method was first introduced by Målqvist and Peterseim in [21].
Classical homogenization theory is based on some structural assumptions on the diffusion coefficient, like periodicity
and scale separation. This method decomposes the solution space into a finite dimensional (coarse) space and a residual
space for the fine scales. In LOD method, the basis functions are constructed with diffusion coefficient information
and have support on small vertex patches, [22]. In doing this, the assumption of periodicity of the microstructure is
not needed.

Suppose TH indicates a standard Finite Element mesh of Ω with the local mesh size HT := diam(T) for T ∈ TH
and a maximum mesh size of H := max

T∈TH
HT . We assume that TH is quasi-uniform, it means there exists a generic

constant η > 0 such that

min
T∈TH

HT > ηH. (4.1)

Now we define,

σ := max
T∈TH

HT

diam(BT )
> 1, (4.2)

where BT is the largest ball contained in T ∈ TH . This constant is called the shape regularity and represents the
quality of the mesh.

We need another scale h < H that is small enough to resolve all related microscopic aspects of the problem to
construct accurate discretization methods on the scale H. In this scale, the Finite Element mesh Th is obtained from
TH using uniform refinement, for example, making 2d finer meshes by halving the sides of the former meshes. This
ensures that mesh uniformity and shape regularity are preserved in Th, while Th is satisfied in (4.1) and (4.2) with the
same constants. We shall also emphasize that the global mesh Th is used theoretically, but, in practice, Th will only
be explored locally.

For T = Th, TH , we denote

P 1(T ) := {v : Ω→ R | ∀T ∈ T , v|T is a polynomial of degree 1},

and define the spaces VH := P 1(TH)∩H1
0 (Ω) and Vh := P 1(Th)∩H1

0 (Ω), so that VH ⊆ Vh. Suppose NH denotes the set
of interior nodes of TH , and Πz ∈ VH also denotes the corresponding nodal basis function (test/hat function) specified
by the Lagrange property of its nodal values, Πz(z) = 1 and Πz(y) = 0,∀y ∈ NH \ {z}, such that span({Πz}z∈NH ) =
VH .

For finding Un ∈ Vh, we apply the notation ∂̄tU = (Un − Un−1)/∆t to the classical backward Euler FEM with
uniform discretization in time,

(∂̄tU, v) + b(Un, v) = (fn, v), ∀ v ∈ Vh, (4.3)

for n = 1, ...N , U0 ∈ Vh is initial approximation of u0 and fn := f(n∆t, ·), where, b(u, v) =
∫

Ω
aε∇u · ∇vdx.

The aim of this method is to find an approximate solution, Ûn, in some subspace V̂ ⊂ Vh, such that dim V̂ = dim
VH and the error ‖Un − Ûn‖ ≤ CH2 is valid. Here, the constant C is independent of the variations in aε, and Ûn is
less expensive than Un to compute.

Now, a generalized Finite Element Method (GFEM) space is constructed by orthogonal decomposition using only the
diffusion coefficient aε. It has been proven in [20] that this space is actually sufficient to achieve method convergence.
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The (weighted) Clément interpolation operator JH : Vh → VH is used to construct space V̂ and defined by

JHv =
∑
z∈NH

(JHv)(z)Πz, where (JHv)(z) :=

∫
Ω
vΠzdx∫

Ω
Πzdx

. (4.4)

Denote the kernel of the Clément interpolation operator (4.4) by V f = {v ∈ Vh : JHv = 0}. This space contains all
fine scale characteristics not achieving on VH . Then, the space Vh can be decomposed into Vh = VH ⊕ V f , in fact
for each v ∈ Vh we have v = vH + vf , where vH ∈ VH and vf ∈ V f and (vH , v

f ) = 0, where (u, v) =
∫

Ω
uvdx is the

classical L2 inner product.
We now define the orthogonal projection Rf : Vh → V f as follows

b(Rfv, w) = b(v, w), ∀w ∈ V f , v ∈ Vh.
Accordingly the GFEM space, which is called the multiscale space, can be defined so that

V ms := VH −RfVH ,
which leads to some other orthogonal decomposition Vh = V ms⊕V f . We want to find the projection Rf of the nodal
basis function Πx ∈ VH , for constructing a basis for V ms. Let’s call this projection CΠx, such that CΠx ∈ V f is a
solution to the (global) corrector problem

b(CΠx, w) = b(Πx, w), ∀w ∈ V f . (4.5)

As a result, the multiscale space V ms has a basis that is given by {Πx − CΠx : x ∈ NH}. Furthermore, we also define
the projection Rms : Vh → V ms, by

b(Rmsv, w) = b(v, w), ∀w ∈ V ms, v ∈ Vh.
Note that Rms = I −Rf . Now define the corresponding GFEM to (4.3) to find Umsn ∈ V ms such that

(∂̄tU
ms
n , v) + b(Umsn , v) = (fn, v), ∀ v ∈ V ms,

(Ums0 , v) = (U0, v), ∀ v ∈ V ms,
(4.6)

for n = 1, ..., N . Solving the corrector problems (4.5) is computationally costly because they are posed in the fine
scale space V f . Furthermore, since the correctors CΠx have global support in general, the resulting linear system (4.6)
is damaged in the sense of sparsity. However, according to [21], CΠx decays exponentially. This experiment leads
to localize the corrector problems to smaller patches of coarse elements as a result of the observation. We employ a
variation described in [20], which decreases the needed patch size. A patch with size k for every K ∈ TH , ωk(K), is
defined as

ω0(K) := intK,

ωk(K) := int (∪{K̂ ∈ TH : K̂ ∩ ωk−1(K) 6= ∅}), k = 1, 2, ... .

Figure 2 illustrates how patches enlarge as k increases. It is also noted that, V f (ωk(K)) := {ω ∈ V f : v(z) =

0 on Ω̄ \ ωk(K)}. Define RfK : Vh → V f ,∫
Ω

aε(x)∇(RfKv) · ∇w =

∫
K

aε(x)∇v · ∇w, ∀ v ∈ Vh, w ∈ V f ,

also it is remarked that Rf :=
∑

K∈TH
RfK . The operator RfK,k : Vh → V f (ωk(K)) is a localization of RfK ,∫

ωk(K)

aε(x)∇(RfK,kv) · ∇w =

∫
K

aε(x)∇v · ∇w, ∀ v ∈ Vh, w ∈ ωk(K),

Regarding Rfk :=
∑

K∈TH
RfK,k, we introduce a localized multiscale space for each nonnegative integer k as, V msk :=

VH − RfkVH . Indeed, {Πx − CkΠx : x ∈ NH} is a basis for V msk , where CkΠx = RfkΠx is the localized version of CΠx.

The local orthogonal decomposition refers to the process of decomposing Vh into the orthogonal spaces V ms and V f ,
which V msk is the localized version of V ms.
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Figure 2. Illustration of patches around an element K.

Lemma 4.1. (Lemma 3.4 in [20]) Suppose α and β are constants defined in (1.2). Then there exist a constant
0 < µ < 1 that depends on the contrast β/α such that

‖Rfv −Rfkv‖+ ≤ Ck
d/2µk‖v‖+, v ∈ Vh,

where C depends on α, β and σ, but not on the variations of aε and ‖ · ‖+ := ‖(aε)1/2∇ · ‖.

The orthogonal projection Rmsk : Vh → V msk is defined by

b(Rmsk v, w) = b(v, w), ∀w ∈ V msk ,

and we replace V ms by V msk to have the localization of (4.6). The purpose of localized GFEM formulation is to find
Umsk,n ∈ V msk such that

(∂̄tU
ms
k,n, v) + b(Umsk,n, v) = (fn, v), ∀ v ∈ V msk ,

(Umsk,0 , v) = (U0, v), ∀ v ∈ V msk ,
(4.7)

for n = 1, ..., N .

Theorem 4.2. (Theorem 4.1 in [20]) Let Un be the solution to (4.3) and Umsk,n the solution to (4.7). Then, for
1 ≤ n ≤ N ,

‖Umsk,n − Un‖L2(Ω) ≤ C(1 + log
tn
∆t

)(H + kd/2µk)2(t−1
n ‖U0‖L2(Ω)

+‖f‖L∞(0,T,L2(Ω)) + ‖ḟ‖L∞(0,T,L2(Ω))),

where C depends on α, β and σ; and tN is final time.

Remark 4.3. (Remark 4.6 in [20]) We note that the choice of k and the size of µ determine the rate of the convergence.
In general, to achieve optimal order convergence rate, k should be chosen proportional to the log(H−1), i.e. k =
c log(H−1). With this choice of k we have ‖Umsk,n − Un‖L2(Ω) ≤ C(1 + log n)H2 t−1

n .

If we have inhomogeneous boundary condition in (1.1), we will introduce Sobolev space

V := H1
0,∂Ω(Ω) = {v ∈ H1(Ω) : v|∂Ω = 0},

and let U = Û + g with Û ∈ V. In this case the full approximation is

UmsH := ÛmsH + ωg + g,
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where

b(ÛmsH , v) =

∫
Ω

fvdx − b(g, v),

and

b(ωg, v) = −a(g, v), for all v ∈W,
W is fine scale space [22].

Let Ω be the unit square, f(x, t) = 0, u0 = 1 and u|∂Ω = tx2. Our reference mesh size is h = 28 and the variation
range of H is H = 22, 23, 23.5, 24, 24.5, 25.

The backward Euler LOD approach is compared to the standard backward Euler Finite Element Method. We
compare the error in the L2-norm between these solutions and the reference solutions at final time T = 1 vs. H. The
time step is ∆t = 0.01. Refer to Figure 3 for the LOD method, we observe optimal convergence.

Figure 3. Error in L2 − norm vs. H. Left: periodic diffusion coefficient as Model A (5.1), Right:
Nonperiodic diffusion coefficient as Model B (5.2).

Remark 4.4. We denote the solution corresponding to aε(m,x)by ULOD(m) for every parameter m. Also the estimate
of the Dirichlet-to-Neumann map will be shown by ΛLOD(m). By this notation, the inverse problem (IPLOD) is
formulated as

min
m
‖ΛLOD(m)− Λ̃‖L(G,H−1/2(∂Ω)), (IPLOD).

5. Numerical experiments

This section is devoted to provide some examples of numerical experiments to illustrate the behavior of the proposed
numerical methods for solving the inverse problems.

First, we emphasize that solving the full problem (1.1) on a fine mesh Th with resolution h < ε, simulates the obser-

vational data, Λ̃ for some m̃. Here, we estimate the Dirichlet-to-Neumann map in finite space L(G,H) as we discussed
in Section 2, in which G and H have basis G = {x, y, x2, y2, xy, t, xt, yt, x2t, y2t, xyt} and H = {x, y, x2, y2, xy}. As a
result, we are able to recover the parameter m by solving problems (IPAnalytic), (IPHMM ) and (IPLOD) separately.

Table 1 illustrates how we recovered the parameter m and what the relative errors |m−m̃||m̃| are.

In all of the simulations, a standard P1 Finite Element Method is used on a regular triangulation of the domain.
In our examples we use the microsoft.matlab.2020 package on a computer equipped with the following specifications:
Windows 10 Pro with 64-bit operating system, 32 GB of RAM, and Intel Core i7-9700 processor. Minimization is
performed using the MATLAB fminbnd function. The implementation of the LOD method using MATLAB code in
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Chapter 7 of [22] is done. We set Ω = [0, 1] × [0, 1], ε = 1/100, H = 1/16, h = 1/256, T0 = 1, ∆t = 0.01, f = 0,
δ = ε for HMM, and l = 2 for LOD method.

Example 5.1. Model A. The microstructure model is represented by the multiscale function

aε(m,x) = 1.1 +m sin(2πx2/ε), (5.1)

The coefficient aε is plotted in the left side of Figure 4. The corresponding homogenized coefficient is [16]

A(m) =

(
〈a(m, ·)〉 0

0 〈a(m, ·)−1〉−1

)
,

where 〈a(m, ·)〉 = 1
|Ω|
∫

Ω
a(m,x)dx.

Figure 4. Left: Model A, Right: Model B

Example 5.2. Model B. Here, the microstructure model is of the form of the following multiscale function

aε(m,x) = 1.1 + sin(2πx̂2/ε), x̂ = %mx,

such that

%m =

(
cos(2πm) sin(2πm)
− sin(2πm) cos(2πm)

)
,

This coefficient aε is also plotted in the right side of Figure 4 and the corresponding homogenized coefficient is [16]

A(m) = %Tm

(
〈a(m, .)〉 0

0 〈a(m, .)−1〉−1

)
%m.

Example 5.3. Model C. The analog of Model A is a class of separable functions aε, The microstructure model is
represented by the multiscale function

aε(m, y) = aε1(m, y1)aε2(m, y2),

where aε1 and aε2 of the type in (5.1)(see Figure 5). According to [16], the corresponding homogenized coefficient is

A(m) =

(
〈a1(m, .)−1〉−1〈a2(m, .)〉 0

0 〈a2(m, .)−1〉−1〈a1(m, .)〉

)
.
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Figure 5. Model C

Example 5.4. Model D. The microstructure model is represented by the multiscale function

aε(m,x) =
(R1 +m sin(2πx1)) + (R1 +m cos(2πx2))

(R1 +m sin(2πx1/ε))(R1 +m sin(2πx2/ε))
I,

Figure 6 depicts the coefficient aε [14].

A(m,x) =
(R1 +m sin(2πx1)) + (R1 +m cos(2πx2))

R1

√
R2

1 −m2
I.

Figure 6. Model D. Left: Macroscale, Right: Microscale

Table 1 shows the relative error in the estimation of the microscale parameter m ∈ R. Our experiments for finding
relative errors show that the HMM and LOD are independent of choosing intervals. Table 2 contains a comparison
of the performance time (in seconds) using different forward solvers. The differences in the inversion results can be
attributed to the resolution of the meshes used, the mismatch between the oscillatory data and the slowly varying
predictions, and errors caused by using the optimization routine.
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Table 1. Relative error in inversion for a microscale parameter.

Analytic HMM LOD
Model A 0.2633 0.0968 0.0098
Model B 0.0319 0.0318 1.3451e-05
Model C 0.0494 0.0469 0.2681
Model D 0.0273 0.1854 0.0029

Table 2. Time of inversion for a microscale parameter.

Analytic HMM LOD
Model A 6 366 7835
Model B 0.3 299 5919
Model C 6 215 7872
Model D 7 412 9612

For the next examples, forward computations are made by LOD solver for macroscopic predictions. The results in
Table 3 show the inversion results. Here we set ε = 1/8.

Example 5.5. Nonperiodic Model. Now, we consider the multiscale model, represented by the function

aε(m,x) = (2−m sin(2π tan(
15π

32
x1/ε))). (5.2)

It is plotted in left side of Figure 7. Even though the periodicity is 15/4, it does not possess a periodic microstructure.

Figure 7. Left: Nonperiodic Model, Right: Nonaffine Model

Example 5.6. Nonaffine parameterized Model.
Above Figures 4, 5, 6 and 7 demonstrate the contours of the diffusion coefficients with high oscillations in microscale,

furthermore the Fig. 6 depicts the difference of the oscillations in macro and micro scales.
We consider a nonaffine parametrization of the multiscale tensor. In this case the function %(m,x) controls the

orientation of the oscillations of the full tensor aε(m,x), which is defined as

aε(m,x) = 4(cos(
2πe1TQ

ε
) + 1.5),
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Table 3. Relative error for nonperiodic and nonaffine model

Nonperiodic Model 0.0278
Nonaffine Model 2.2995e-04

Table 4. Microscale parameter inversion for a random microstructure. The true parameter is m̄ = .6
and the percentage of the recovered parameter m, lying in the given interval Im̄, is shown.

Im̄ l=1 l=2 l=3 l=4
[.5,.7] 58% 55% 63% 61%

[.55,.65] 11% 12% 15% 19%
[.59,.61] 7% 6% 6% 6%

where,

Q =

(
cos(2π%(m,x1)) sin(2π%(m,x2))
− sin(2π%(m,x1)) cos(2π%(m,x2))

)
, %(m,x) = 1.05 +mx.

See right side of Figure 7.

Example 5.7. Random microstructure [22]. It is a model in which the microstructure is created by randomly selecting
either a value β = 1 (black) or a value α = 1/100 (white) with equal probability 1/2 in each field of a Cartesian mesh
of width 1/25 multiplied by an unknown parameter m (Figure 8). These experiments involve the fixing of m̄, and
solving the minimization problem IPLOD. It has been carried out for 100 realizations of aε(m). We compare the
performance of LOD forward solvers corresponding to four different choices of the size of the patches, l = 1, 2, 3, 4.
The other parametrers are chosen h = 1/27 and H = 1/23. As seen in Table 4 the frequency of recovered parameters
m that lie in the interval Im̄, centered at the true parameter and for different value of l, we have good results, and
this is one of the advantages of the LOD method.

Figure 8. An example of randomly non-periodic diffusion coefficient

6. Conclusion

We present computational techniques for solving inverse problems for multiscale parabolic partial differential equa-
tion. Instead of directly working with the effective equation we constrain the search space by representing the microscale
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by a parameter in order to have a well-posed inverse problem. When the explicit form of the effective equation exists
we use this form, otherwise, some numerical multiscale methods such as HMM and LOD method must be used. It
is noted that in using LOD method, the diffusion coefficient dose not need to have some properties such as scale
seperation, or periodicity and only belonging to L∞ is sufficient. Here we presented 7 numerical examples which show
the algorithm is convergent (using Frobenius-norm).The performance of this technique applied to random media is
demonstrated (Example 5.7 ). Our experiments show that the LOD method is more precisely rather than other two,
however the elapsed time using in this method is more than others, in other words the LOD method does not exploit
the scale separation in comparison to HMM that becomes computationally more expensive when applied to problems
with scale separation[3, 18].
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