This paper investigates the existence of distributional solutions for a class of nonlinear elliptic $\overrightarrow{p}(\cdot)-$equations, the analysis focuses on the right-hand side, which comprises of a datum $f\in L^{\overrightarrow{p'}(\cdot)}(\Omega)$ that is independent of $u$, and a compound nonlinear term involving a given function $g \in L^{\overrightarrow{p}(\cdot)}(\Omega)$, the solution $u$ and its partial derivatives $\partial_iu,\,i\in\{1,\ldots,N\}$, where $L^{\overrightarrow{p}(\cdot)}(\Omega)$ and $L^{\overrightarrow{p'}(\cdot)}(\Omega)$ represent the variable exponents anisotropic Lebesgue spaces.
Naceri, M. (2026). Existence results for nonlinear elliptic $\overrightarrow{p}(\cdot)-$equations. Computational Methods for Differential Equations, 14(1), 235-246. doi: 10.22034/cmde.2024.61426.2644
MLA
Naceri, M. . "Existence results for nonlinear elliptic $\overrightarrow{p}(\cdot)-$equations", Computational Methods for Differential Equations, 14, 1, 2026, 235-246. doi: 10.22034/cmde.2024.61426.2644
HARVARD
Naceri, M. (2026). 'Existence results for nonlinear elliptic $\overrightarrow{p}(\cdot)-$equations', Computational Methods for Differential Equations, 14(1), pp. 235-246. doi: 10.22034/cmde.2024.61426.2644
CHICAGO
M. Naceri, "Existence results for nonlinear elliptic $\overrightarrow{p}(\cdot)-$equations," Computational Methods for Differential Equations, 14 1 (2026): 235-246, doi: 10.22034/cmde.2024.61426.2644
VANCOUVER
Naceri, M. Existence results for nonlinear elliptic $\overrightarrow{p}(\cdot)-$equations. Computational Methods for Differential Equations, 2026; 14(1): 235-246. doi: 10.22034/cmde.2024.61426.2644