Existence results for nonlinear elliptic $\overrightarrow{p}(\cdot)-$equations

Document Type : Research Paper

Author

ENS of Laghouat; Box 4033 Station post avenue of Martyrs, Laghouat, Algeria.

Abstract

This paper investigates the existence of distributional solutions for a class of nonlinear elliptic $\overrightarrow{p}(\cdot)-$equations, the analysis focuses on the right-hand side, which comprises of a datum $f\in L^{\overrightarrow{p'}(\cdot)}(\Omega)$ that is independent of $u$, and a compound nonlinear term involving a given function $g \in L^{\overrightarrow{p}(\cdot)}(\Omega)$, the solution  $u$ and its partial derivatives $\partial_iu,\,i\in\{1,\ldots,N\}$, where $L^{\overrightarrow{p}(\cdot)}(\Omega)$ and $L^{\overrightarrow{p'}(\cdot)}(\Omega)$ represent the variable exponents anisotropic Lebesgue spaces.

Keywords

Main Subjects


  • [1] H. Brézis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier., 18 (1968), 115–175
  • [2] F. E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc., 69 (1963), 862–874.
  • [3] Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006),1383–1406.
  • [4] D. Cruz-Uribe, A. Fiorenza, M. Ruzhansky, and J. Wirth, Variable Lebesgue Spaces and Hyperbolic Systems, Advanced Courses in Mathematics - CRM Barcelona. Birkhäuser, Basel, 2014.
  • [5] L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics. Springer, New York, 2017 (2011).
  • [6] X. Fan, Anisotropic variable exponent Sobolev spaces and →−p (x)-Laplacian equations, Complex Var. Elliptic Equ., 56 (2011), 623–642.
  • [7] X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and W1,p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424–446.
  • [8] K. H. Karlsen (CMA), Notes on weak convergence, (MAT4380 - Spring 2006), 2006.
  • [9] M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenrate problem arising in the theory of eletrorheological fluids, Proc. R. Soc. A., 462 (2006), 2625–2641.
  • [10] G. J. Minty, On a “monotonicity” method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), 1038–1041.
  • [11] M. Naceri, Anisotropic nonlinear elliptic equations with variable exponents and two weighted first order terms, Filomat, 38(3) (2024), 1043–1054.
  • [12] M. Naceri, Anisotropic nonlinear elliptic systems with variable exponents, degenerate coercivity and Lq(·) data, Ann. Acad. Rom. Sci. Ser. Math. Appl., 14(1-2) (2022), 107–140.
  • [13] M. Naceri, Anisotropic nonlinear weighted elliptic equations with variable exponents, Georgian Math. J., vol., 30(2) (2023), 277-285.
  • [14] M. Naceri, Existence results for anisotropic nonlinear weighted elliptic equations with variable exponents and L1 data, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 23(4) (2022), 337–346.
  • [15] M. Naceri, Singular Anisotropic Elliptic Problems with Variable Exponents, Mem. Differ. Equ. Math. Phys., 85(2022) (2022), 119–132.
  • [16] M. Naceri and M. B. Benboubker, Distributional solutions of anisotropic nonlinear elliptic systems with variable exponents: existence and regularity, Adv. Oper. Theory., 7(2) (2022), 1–34.
  • [17] M. Naceri, F. Mokhtari, Anisotropic nonlinear elliptic systems with variable exponents and degenerate coercivity, Appl. Anal., 100(11) (2021), 2347–2367.
  • [18] M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, Springer, Berlin. Lecture Notes in Mathematics, 1748, 2000.
  • [19] E. Zeidler, Nonlinear functional analysis and its applications, Volume I: Fixed-point theorems, Springer-Verlag, New York, 1986.
  • [20] E. Zeidler, Nonlinear functional analysis and its applications. II, B. Nonlinear monotone operators. Translated from the German by the author and Leo F, Boron Springer-Verlag, New York, 1990.