This paper studies the existence of distributional solutions for nonlinear elliptic $\overrightarrow{p}(\cdot)-$equations, focusing on the right-hand side which is a sum of a datum $f\in L^{\overrightarrow{p'}(\cdot)}(\Omega)$ independent of $u$, and a compound nonlinearity composed of a given function $g \in L^{\overrightarrow{p}(\cdot)}(\Omega)$, the solution $u$ and its partial derivatives $\partial_iu,\,i\in\{1,\ldots,N\}$, where $L^{\overrightarrow{p}(\cdot)}(\Omega),\,L^{\overrightarrow{p'}(\cdot)}(\Omega)$ represent the variable exponents anisotropic Lebesgue spaces.
Naceri, M. (2024). Existence results for nonlinear elliptic $\overrightarrow{p}(\cdot)-$equations. Computational Methods for Differential Equations, (), -. doi: 10.22034/cmde.2024.61426.2644
MLA
Naceri, M. . "Existence results for nonlinear elliptic $\overrightarrow{p}(\cdot)-$equations", Computational Methods for Differential Equations, , , 2024, -. doi: 10.22034/cmde.2024.61426.2644
HARVARD
Naceri, M. (2024). 'Existence results for nonlinear elliptic $\overrightarrow{p}(\cdot)-$equations', Computational Methods for Differential Equations, (), pp. -. doi: 10.22034/cmde.2024.61426.2644
CHICAGO
M. Naceri, "Existence results for nonlinear elliptic $\overrightarrow{p}(\cdot)-$equations," Computational Methods for Differential Equations, (2024): -, doi: 10.22034/cmde.2024.61426.2644
VANCOUVER
Naceri, M. Existence results for nonlinear elliptic $\overrightarrow{p}(\cdot)-$equations. Computational Methods for Differential Equations, 2024; (): -. doi: 10.22034/cmde.2024.61426.2644