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Abstract

This paper studies the existence of distributional solutions for nonlinear elliptic −→p (·)−equations, focusing on

the right-hand side which is a sum of a datum f ∈ L
−→
p′(·)(Ω) independent of u, and a compound nonlinearity

composed of a given function g ∈ L
−→p (·)(Ω), the solution u and its partial derivatives ∂iu, i ∈ {1, . . . , N}, where

L
−→p (·)(Ω), L

−→
p′(·)(Ω) represent the variable exponents anisotropic Lebesgue spaces.

Keywords. Variable exponent, Nonlinear elliptic equation, Anisotropic Lebesgue-Sobolev space, Distributional solution, Existence, Compound

nonlinearity.

2010 Mathematics Subject Classification. 35J60, 35J66, 35J67.

1. Introduction

Let Ω ⊂ RN (N ≥ 2) be a bounded open Lipschitz domain (i.e. with Lipschitz boundary ∂Ω).
Our endeavor here is to prove the existence of distributional solution to the anisotropic nonlinear elliptic problems

of the form

−
N∑
i=1

∂i
(
|∂iu|pi(x)−2∂iu

)
= f(x) +

N∑
i=1

(
|g|+ |u|+ |∂iu|

)pi(x)−1
, in Ω.

u = 0, on ∂Ω,

(1.1)

where, f ∈ L
−→
p′ (·)(Ω) independent of u, and g ∈ L−→p (·)(Ω), where L

−→p (·)(Ω), L
−→
p′ (·)(Ω) represent the variable exponents

anisotropic Lebesgue spaces defined by

L
−→p (·)(Ω) =

N⋂
i=1

Lpi(·)(Ω), L
−→
p′ (·)(Ω) =

N⋂
i=1

Lp
′
i(·)(Ω),

where p′i(·) denotes the Hölder congugate of pi(·), and ∂iu = ∂u
∂xi

, i ∈ {1, . . . , N}.
This paper is concerned with the study of the existence results of distributional solutions concerning a class

of −→p (x)−Laplacian problems (i.e. variable exponents anisotropic Laplace operator equations) characterized by a
compound nonlinearity, it should also be noted here that this type of operators has many uses in applied sciences
(see[3, 9, 18]), and it represents a generalization of p(x)−Laplacian ( For more similar problems, you can see, but not

limited to, the papers [11–17]). The right-hand side of our problem is given in terms of L
−→
p′ (·)−data and nonlinearity(

|g| + |u| + |∂iu|
)pi(x)−1

with g ∈ L−→p (·)(Ω), where L
−→p (·)(Ω), L

−→
p′ (·)(Ω) represent the variable exponents anisotropic

Lebesgue spaces.
We began our proof in this work by applying Leray-Schauder’s fixed point Theorem of existence (For more about

fixed point Theorem, can see [19]) in order to prove the existence of a sequence of suitable approximate solutions (un).
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Then we needed to provide a priori estimates for un and its partial derivatives. So, we proved the boundedness of un in
W̊ 1,−→p (·)(Ω), and the a.e. convergence in Ω for ∂iun, i ∈ {1, . . . , N, }, which can be turned into strong L1-convergence.

Then, we pass to the limit strongly in the term |∂iun|pi(x)−2∂iun, and in
(
|gn| + |un| + |∂iun|

)pi(x)−1
. Through this

we were able to deduce the convergence of un to the solution u of (1.1).
Our paper was staged as follows: Section 2 for some basic concepts about anisotropic variable exponent Lebesgue-

Sobolev spaces and some important properties related to them. Our main results with proof are in section 3.

2. Preliminaries and basic concepts

In this section, we will learn about anisotropic Lebesgue-Sobolev spaces with variable exponent and their most
important distinctive properties, as explained, for example, in the papers [4, 5, 7].

First, we denote by

C+(Ω) = {continuous function p(·) : Ω 7−→ R, 1 < p− ≤ p+ <∞},
where, Ω ⊂ RN (N ≥ 2) be a bounded open subset,

p+ = max
x∈Ω

p(x) and p− = min
x∈Ω

p(x).

• Let p(·) ∈ C+(Ω). Then, ∀ξ, ξ′ ∈ R and ∀ε > 0 the following inequalities are true :

(∗) Young’s inequality :

|ξξ′| ≤ ε|ξ|p(x) + c(ε)|ξ′|p
′(x), (2.1)

where, p′(·) denotes the Hölder conjugate of p(·) (i.e. 1
p(·) + 1

p′(·) = 1 in Ω).

(∗) In addition :

|ξ + ξ′|p(x) ≤ 2p
+−1(|ξ|p(x) + |ξ′|p(x)).

(∗) If (ξ, ξ′) 6= (0, 0),

(|ξ|p(x)−2ξ − |ξ′|p(x)−2ξ′)(ξ − ξ′) ≥

{
22−p+ |ξ − ξ′|p(x), if p(x) ≥ 2,

(p− − 1) |ξ−ξ′|2
(|ξ|+|ξ′|)2−p(x) , if 1 < p(x) < 2.

(2.2)

• Lebesgue space Lp(·)(Ω) with variable exponent p(·) ∈ C+(Ω) defined by

Lp(·)(Ω) := {measurable functions u : Ω 7→ R; ρp(·)(u) <∞},
where the function

ρp(·)(u) :=

∫
Ω

|u(x)|p(x)dx, is called the convex modular.

It is a Banach and reflexive space when equipped with the Luxemburg norm given by:

u 7→ ‖u‖p(·) := ‖u‖Lp(·)(Ω) = inf
{
s > 0 : ρp(·)(

u

s
) ≤ 1

}
,

• The following Hölder type inequality holds :∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
‖u‖p(·)‖v‖p′(·) ≤ 2‖u‖p(·)‖v‖p′(·).

• Next results(see [4, 5]) we need to use them later. Let (un), u ∈ Lp(·)(Ω), then:

min

(
ρ

1

p+

p(·)(u), ρ
1

p−

p(·)(u)

)
≤ ‖u‖p(·) ≤ max

(
ρ

1

p+

p(·)(u), ρ
1

p−

p(·)(u)

)
, (2.3)

min
(
‖u‖p

−

p(·), ‖u‖
p+

p(·)

)
≤ ρp(·)(u) ≤ max

(
‖u‖p

−

p(·), ‖u‖
p+

p(·)

)
. (2.4)

•We will now define the main spaces in our paper are anisotropic Sobolev spaces with variable exponents W 1,−→p (·)(Ω).
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Let pi(·) ∈ C
(
Ω, [1,+∞)

)
, i ∈ {1, . . . , N}, and ∀x ∈ Ω we set that

−→p (x) = (p1(x), . . . , pN (x)), p+(x) = max
1≤i≤N

pi(x), p−(x) = min
1≤i≤N

pi(x),

1

p(x)
=

1

N

N∑
i=1

1

pi(x)
, p?(x) =

Np(x)

N − p(x)
, if p(x) < N.

The Banach space W 1,−→p (·)(Ω) is defined by

W 1,−→p (·)(Ω) =
{
u ∈ Lp+(·)(Ω) and ∂iu ∈ Lpi(·)(Ω), i ∈ {1, . . . , N}

}
,

equipped with the following norm :

u 7→ ‖u‖−→p (·) = ‖u‖p+(·) +
N∑
i=1

‖∂iu‖pi(·) . (2.5)

The Banach space W̊ 1,−→p (·)(Ω) (Our results are based on it) is defined as follow

W̊ 1,−→p (·)(Ω) = W 1,−→p (·)(Ω) ∩W 1,1
0 (Ω),

under the norm (2.5).
• The following important results (see [6, 7]) are needed during the proof steps.
Let Ω ⊂ RN be a bounded domain and −→p (·) ∈ (C+(Ω))N .

Lemma 2.1. If we have r ∈ C+(Ω) such that r(·) < max(p+(·), p?(·)) in Ω. Then

W̊ 1,−→p (·)(Ω) ↪→↪→ Lr(·)(Ω) is compact embedding. (2.6)

Lemma 2.2. If we have the following condition

p+(·) < p?(·) in Ω. (2.7)

Then, there exists c > independent of u, such that

‖u‖p+(·) ≤ c
N∑
i=1

‖∂iu‖pi(·), ∀u ∈ W̊
1,−→p (·)(Ω). (2.8)

Remark 2.3. If (2.7) holds, then (2.8) implies that

u 7→
N∑
i=1

‖∂iu‖pi(·) is an equivalent norm to (2.5). (2.9)

3. Statement of results and proofs

Definition 3.1. u is a distributional solution of the problem (1.1) if and only if u ∈W 1,1
0 (Ω), and for all ϕ ∈ C∞c (Ω),

N∑
i=1

∫
Ω

|∂iu|pi(x)−2∂iu∂iϕdx =
N∑
i=1

∫
Ω

(|g|+ |u|+ |∂iu|)pi(x)−1
ϕdx+

∫
Ω

f(x)ϕdx.

Our main result is that :

Theorem 3.2. Let pi(·) ∈ C+(Ω), i ∈ {1, . . . , N} such that p < N and (2.7) holds, and assume that f ∈ L
−→
p′ (·)(Ω), g ∈

L
−→p (·)(Ω). Then the problem (1.1) has at least one solutions u ∈ W̊ 1,−→p (·)(Ω) in the distributional sense.

Remark 3.3. Condition (2.7) is adopted in our main Theorem in order to consider the norm (2.9) in all steps of our
work.
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3.1. Existence of approximate solutions. Let (fn) and (gn) be a two sequences of bounded functions defined in

Ω which (fn), (gn) converges to f, g in L
−→
p′ (·)(Ω), L

−→p (·)(Ω) respectively.

Remark 3.4. Since fn ∈ L
−→
p′ (·)(Ω), then from (2.3), we obtain

‖fn‖p′i(·) ≤ 1 + ρ

1

p′−
i

(·)

p′i(x) (fn) ≤ 2 + ρ

1

p′−−
p′i

(fn) <∞.

Through this, we conclude that

fn is bounded in Lp
′
i(·)(Ω), i = 1, . . . , N. (3.1)

By following similar arguments to gn in the space L
−→p (·)(Ω), we can get that

gn is bounded in Lpi(·)(Ω), i = 1, . . . , N. (3.2)

Lemma 3.5. Let pi(·) ∈ C+(Ω), i ∈ {1, . . . , N} such that p < N and (2.7) holds, and assume that f ∈ L
−→
p′ (·)(Ω), g ∈

L
−→p (·)(Ω). Then, there exists at least one solution un ∈ W̊ 1,−→p (·)(Ω) in the weak sense to the approximated problems

−
N∑
i=1

∂i
(
|∂iun|pi(x)−2∂iun

)
= fn(x) +

N∑
i=1

(|gn|+ |un|+ |∂iun|)pi(x)−1
, in Ω,

un = 0, on ∂Ω,

(3.3)

in the sense that

N∑
i=1

∫
Ω

|∂iun|pi(x)−2∂iun∂iϕdx =
N∑
i=1

∫
Ω

(|gn|+ |un|+ |∂iun|)pi(x)−1
ϕdx+

∫
Ω

fn(x)ϕdx, (3.4)

for all ϕ ∈ W̊ 1,−→p (·)(Ω).

Proof. For n ≥ 1 fixed in N and ∀(v, ξ) ∈ X × [0, 1] which X = W̊ 1,−→p (·)(Ω), we consider the problem−
N∑
i=1

∂i
(
|∂iu|pi(x)−2∂iu

)
= ξ

(
fn +

N∑
i=1

(|gn|+ |v|+ |∂iv|)pi(x)−1

)
, in Ω,

u = 0 on ∂Ω.

(3.5)

Let be the operator: T : X × [0, 1] −→ X such that :

∀(v, ξ) ∈ X × [0, 1] : u = T (v, ξ)⇔

u is the only weak solution of the problem (3.5), verify :

∀ϕ ∈ X :
N∑
i=1

∫
Ω

|∂iu|pi(x)−2∂iu∂iϕdx = ξ

(∫
Ω

fnϕdx+
N∑
i=1

∫
Ω

(|gn|+ |v|+ |∂iv|)pi(x)−1
ϕdx

)
. (3.6)

Since it is easy to verify that,

∀(v, ξ) ∈ X × [0, 1] :

(
fn +

N∑
i=1

(|gn|+ |v|+ |∂iv|)pi(x)−1

)
∈ L

−→
p′ (·)(Ω),

then the main Theorem on monotone operators ( see [1, 2, 10, 20]) guarantees us the existence of a weak solution
u to the problem (3.5) in X, and its uniqueness results directly from the uniqueness of the solution to the problem
(= 0), which results from the assumption that there are two weak solutions to (3.5) with taking into account the above
assumption that f is independent of u.



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-12 5

Now we will estimate the solution u. choosing ϕ = u in (3.6), and using (2.7), Hölder inequality, and (2.3), we
obtain

N∑
i=1

∫
Ω

|∂iu|pi(x) dx ≤ 2
∥∥fn∥∥p′i(·)∥∥u∥∥pi(·) + 2

∥∥(|gn|+ |v|+ |∂iv|)pi(x)−1
∥∥
p′i(·)

∥∥u∥∥
pi(·)

≤2
∥∥fn∥∥p′i(·)∥∥u∥∥pi(·) + c

(
1 +

N∑
i=1

∫
Ω

(|gn|+ |v|+ |∂iv|)pi(x)
dx

) 1

p′−− ∥∥u∥∥
pi(·)

≤C
∥∥u∥∥−→p (·) + C ′

(
1 +

N∑
i=1

∫
Ω

(
|gn|pi(x) + |v|pi(x) + |∂iv|pi(x)

)
dx

)∥∥u∥∥−→p (·). (3.7)

By (2.7), Lemma 2.1, and (2.4), we get

∫
Ω

|v|pi(x) dx ≤ 1 + ‖v‖p
+
i (x)

pi(·)

≤ 2 + ‖v‖p
+
+

pi(·)

≤ 2 + c‖v‖p
+
+
−→p (·). (3.8)

By (2.7), (2.8), and (2.4), we get

N∑
i=1

∫
Ω

|∂iv|pi(x) dx ≤ N +
N∑
i=1

‖∂iv‖
p+i (x)

pi(·)

≤ 2N +
N∑
i=1

‖∂iv‖
p++
pi(·)

≤ 2N +

(
N∑
i=1

‖∂iv‖pi(·)

)p++
= 2N + ‖v‖p

+
+
−→p (·). (3.9)

Combining (3.7), (3.8), and (3.9), we find that

N∑
i=1

∫
Ω

|∂iu|pi(x) dx ≤ C
(

1 +
∥∥v∥∥p++−→p (·)

)∥∥u∥∥−→p (·). (3.10)

From another side, by using (2.4), we can obtain

N∑
i=1

∫
Ω

|∂iu|pi(x) dx ≥
N∑
i=1

min{
∥∥∂iu∥∥p−ipi(x)

,
∥∥∂iu∥∥p+ipi(x)

}.
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We put for every i ∈ {1, . . . , N}, ηi =

{
p+

+, if
∥∥∂iu∥∥pi(·) < 1

p−−, if
∥∥∂iu∥∥pi(·) ≥ 1

, we get

N∑
i=1

min{
∥∥∂iu∥∥p−ipi(·),∥∥∂iu∥∥p+ipi(·)} ≥ N∑

i=1

∥∥∂iu∥∥ηipi(·)
≥

N∑
i=1

∥∥∂iu∥∥p−−pi(·) − ∑
{i,ξi=p++}

(∥∥∂iu∥∥p−−pi(·) − ∥∥∂iu∥∥p++pi(·))

≥
N∑
i=1

∥∥∂iu∥∥p−−pi(·) − ∑
{i:ηi=p++}

∥∥∂iu∥∥p−−pi(·) ≥ ( 1

N

N∑
i=1

∥∥∂iu∥∥pi(·))p−− −N.
Then, we get

N∑
i=1

∫
Ω

|∂iu|pi(x) dx ≥
(

1

N

∥∥u∥∥−→p (·)

)p−−
−N. (3.11)

From (3.10) and (3.11), we conclude∥∥u∥∥p−−−→p (·) ≤ C
′
(

1 + ‖v
∥∥p++−→p (·)

)∥∥u∥∥−→p (·). (3.12)

Then, there exists c > 0 such that∥∥u∥∥−→p (·) ≤ c
(

1 + ‖v
∥∥p++−→p (·)

) 1

p
−
−−1

. (3.13)

• Prove the continuity of the operator T :
Let n ≥ 1 fixed in N, and let (vk, ξk)k≥1 ⊂ X × [0, 1] be a sequence converges to (v, ξ) ∈ X × [0, 1]. Then, we have

vk −→ v, Strongly, (3.14)

ξk −→ ξ, Strongly. (3.15)

We consider the sequence (uk){k∈N∗} where uk = T (vk, ξk). Then, we get ∀ϕ ∈ X ;

N∑
i=1

∫
Ω

|∂iuk|pi(x)−2∂iuk∂iϕdx = ξk

(∫
Ω

fnϕdx+
N∑
i=1

∫
Ω

(|gn|+ |vk|+ |∂ivk|)pi(x)−1ϕdx

)
. (3.16)

By (3.13) and the fact that ‖vk‖−→p (·) < +∞ (due (3.14)):

∥∥uk∥∥−→p (·) =
∥∥T (vk, ξk)

∥∥−→p (·) ≤ c
(

1 + ‖vk‖
p++
−→p (x)

) 1

p
−
−−1

≤ δ, (3.17)

with δ > 0 independent of k.
From (3.17) we conclude the boundedness of (uk) in X.

So, there exists a subsequence (still denoted by (uk)) and u ∈ X such that

uk ⇀ u weakly in X. (3.18)

First of all, let us show that,

lim
k−→+∞

Φi,k = 0, (3.19)

where

Φi,k =

∫
Ω

(
|∂iuk|pi(x)−2∂iuk − |∂iu|pi(x)−2∂iw

)
(∂iuk − ∂iu) dx, i ∈ {1, . . . , N, }.
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After choosing ϕ = uk − u in (3.16), we can obtain that

N∑
i=1

Φi,k = ξk

∫
Ω

fn(uk − u) +
N∑
i=1

∫
Ω

(|gn|+ |vk|+ |∂ivk|)pi(x)−1(uk − u) dx

+
N∑
i=1

∫
Ω

|∂iu|pi(x)−2∂iu(∂iuk − ∂iu) dx. (3.20)

Since ‖fn‖p′i(·) < +∞ and ‖(|gn|+ |vk|+ |∂ivk|)pi(x)−1‖p′i(·) < +∞, uk −→ u strongly in Lr(·)(Ω) where r(·) mentioned

in Lemma 2.1, the fact that ‖|∂iu|pi(x)−2∂iu‖p′i(·) < +∞, and (3.18), we conclude that the right side of (3.20) goes to

0 when k −→ +∞, with this we get (3.19).
Now we put

Ω
(1)
i = {x ∈ Ω, pi(x) ≥ 2}, and Ω

(2)
i = {x ∈ Ω, 1 < pi(x) < 2}.

From (2.2), we get

22−p+i
∫

Ω
(1)
i

|∂i(uk − u)|pi(x) dx

≤
∫

Ω
(1)
i

[
|∂iuk|pi(x)−2∂iuk − |∂iu|pi(x)−2∂iu

]
∂i(uk − u) dx ≤ Φi,k.

(3.21)

From another side, we have∫
Ω

(2)
i

|∂i(uk − u)|pi(x) dx

≤
∫

Ω
(2)
i

|∂i(uk − u)|pi(x)

(|∂iuk|+ |∂iu|)
pi(x)(2−pi(x))

2

(|∂iuk|+ |∂iu|)
pi(x)(2−pi(x))

2 dx

≤2 max
{(∫

Ω
(2)
i

|∂i(uk − u)|2(
|∂iuk|+ |∂iu|

)2−pi(x)
dx
) p
−
i
2

,
(∫

Ω
(2)
i

|∂i(uk − u)|2

(|∂iuk|+ |∂iu|)2−pi(x)
dx
) p

+
i
2
}

×max
{(∫

Ω

(
|∂iuk|+ |∂iu|

)pi(x)
dx
) 2−p

+
i

2

,
(∫

Ω

(
|∂iuk|+ |∂iu|

)pi(x)
dx
) 2−p

−
i

2
}

≤2cmax
{(

Φi,k

) p
−
i
2

,
(

Φi,k

) p
+
i
2
}
×

(
1 + (ρpi(|∂iuk|+ |∂iu|))

2−p
−
−

2

)
. (3.22)

Since uk, u ∈ X, and (3.19), after letting k −→ +∞ in (3.21) and in (3.22), we obtain that

lim
k→+∞

∫
Ω

|∂iuk − ∂iu|pi(x) = 0, i ∈ {1, . . . , N, }. (3.23)

By using (2.7) and (2.3), we obtain that

∥∥uk − u∥∥−→p (·) =
N∑
i=1

‖∂i(uk − u)‖pi(·)

≤
N∑
i=1

max

(
ρ

1

p
+
i

pi(·)(∂iuk − ∂iu), ρ

1

p
−
i

pi(·)(∂iuk − ∂iu)

)
, (3.24)

where,

ρpi(·)(∂iuk − ∂iu) =

∫
Ω

|∂i(uk − u)|pi(x) dx, i ∈ {1, . . . , N, }.
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By combining (3.23) and (3.24), we conclude that

lim
k−→+∞

∥∥uk − u∥∥−→p (·) = 0. (3.25)

Then, (3.25) implies that

uk −→ u, Strongly in X. (3.26)

Since the continuity of the function w 7→
N∑
i=1

(|gn|+ |w|+ |∂iw|)pi(x)−1 on X, we can pass to the limit in (3.16) when

k −→ +∞, and (3.26), we obtain ∀ϕ ∈ X,

N∑
i=1

∫
Ω

|∂iu|pi(x)−2∂iu∂iϕdx = ξ

(∫
Ω

fnϕdx+
N∑
i=1

∫
Ω

(|gn|+ |v|+ |∂iv|)pi(x)−1ϕdx

)
. (3.27)

This means that, u = T (v, ξ).
The uniqueness of the weak solution of (3.5) gives us

T (vk, ξk) = uk −→ u = T (v, ξ), Strongly in X. (3.28)

Then, (3.28) implies the continuity of T .

• Prove the compactness of the operator T : Let B̂ be a bounded of X × [0, 1]. Thus B̂ is contained in a product
of the type B × [0, 1] with B a bounded of X, which can be assumed to be a ball of center O and of radius r > 0.

For u ∈ T (B̂), we have, thanks to (3.13):

∥∥u∥∥−→p (·) ≤ c
(

1 + rp
+
+

) 1

p
−
−−1 = ρ.

For u = T (v, ξ) with (v, ξ) ∈ B × [0, 1] (
∥∥v∥∥−→p (·) ≤ r ).

This proves that T applies B̂ in the closed ball of center O and radius ρ ( ρ depend on r) in X.

Let (uk) ⊂ T (B̂) be a sequence, so uk = T (vk, ξk) where (vk, ξk) ∈ B̂.
Since uk remains in a bounded of X, it is possible to extract a subsequence (still denoted (uk)) which converges weakly
to an element u of X, and like (3.28) we can get that

T (vk, ξk) = uk −→ u = T (v, ξ), Strongly in X.

This implies that T (B̂)
X

is compact. Thus, we have proven the compactness of T .
• Let’s prove now that ∃C > 0, such that

∀(v, ξ) ∈ X × [0, 1] : v = T (v, ξ)⇒
∥∥v∥∥−→

P (·) ≤ C.

We have for v ∈ X such that v = T (v, ξ) meaning that

for all ϕ ∈ W̊ 1,−→p (·)(Ω) :

N∑
i=1

∫
Ω

|∂iv|pi(x)−1∂iv∂iϕdx = ξ

(∫
Ω

fnϕdx+
N∑
i=1

∫
Ω

(|g|+ |v|+ |∂iv|)pi(x)−1
ϕdx

)
. (3.29)
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Choosing ϕ = v in (3.29), and using Young’s inequality, Hölder inequality, Lemma 2.1, and (2.7), we get for all ε > 0:

N∑
i=1

∫
Ω

|∂iv|pi(x) dx ≤ 2‖fn‖p′i(·)‖v‖pi(·)

+ ε
N∑
i=1

∫
Ω

(|gn|pi(x) + |v|pi(x) + |∂iv|pi(x)) dx+ C(ε)
N∑
i=1

∫
Ω

|v|pi(x) dx

≤ c‖fn‖p′i(·)‖v‖−→p (·) + ε
N∑
i=1

∫
Ω

(|gn|pi(x) + |v|pi(x) + |∂iv|pi(x)) dx

+ C(ε)
N∑
i=1

∫
Ω

|v|pi(x) dx. (3.30)

By choosing ε = 1
2 , and the use of (3.1), (3.2), and the fact that v ∈ Lp+(·)(Ω), we obtain that∥∥v∥∥p−−−→p (·) ≤ c
(
1 + ‖v‖−→p (·)

)
. (3.31)

By using separation of cases (‖v‖−→p (·) > 1 and ‖v‖−→p (·) ≤ 1), we can easily get from (3.31) that, ∃C > 0 independent
of n such that∥∥v∥∥−→p (·) ≤ C. (3.32)

Since it is clear that T (v, 0) = 0.
Then, the conditions for Leray-Schauder’s fixed point Theorem were met. So, the operator T0 : X −→ X such that
T0(u) = T (u, 1) accepts a fixed point. Therefore, the proof of Lemma 3.5 was completed. �

3.1.1. A priori estimates.

Lemma 3.6. Let {un} be the sequence of approximating solutions of (3.4) in W̊ 1,−→p (·)(Ω). Assume f, g, pi, i ∈
{1, . . . , N} be restricted as in Theorem 3.2. Then, there exists C > 0 such that

‖un‖−→p (·) ≤ C. (3.33)

Moreover,

∂iun −→ ∂iu a.e. in Ω, i ∈ {1, . . . , N}. (3.34)

Proof. By choosing ϕ = un in (3.4), we get that

N∑
i=1

∫
Ω

|∂iun|pi(x) dx =

∫
Ω

fnun dx+
N∑
i=1

∫
Ω

(|g|+ |un|+ |∂iun|)pi(x)−1
un dx.

By using the same way as proof (3.32), we easily get (3.33).

Now, (3.33) implies that, there exists a subsequence (still denoted by (un)) and u ∈ W̊ 1,−→p (·)(Ω) such that

un ⇀ u weakly in W̊ 1,−→p (·)(Ω) and a.e in Ω. (3.35)

We put

∆n =
N∑
i=1

∆n,i,

where,

∆n,i =

∫
Ω

(
|∂iun|pi(x)−2∂iun − |∂iu|pi(x)−2∂iu

)
(∂iun − ∂iu) dx.

Let us first prove that,

lim
n→+∞

∆n = 0. (3.36)
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We have

∆n =
N∑
i=1

∫
Ω

|∂iun|pi(x)−2∂iun(∂iun − ∂iu) dx

−
N∑
i=1

∫
Ω

|∂iu|pi(x)−2∂iu(∂iun − ∂iu) dx.

By choosing ϕ = un−u in (3.4), and using (3.35), the facts that ‖fn‖p′i(·) <∞, ‖(|gn|+ |un|+ |∂iun|)pi(x)−1‖p′i(·) <∞,
we obtain that

lim
n→+∞

N∑
i=1

∫
Ω

|∂iun|pi(x)−2∂iun(∂iun − ∂iu) dx = 0. (3.37)

By (3.35) and the fact that ‖|∂iu|pi(x)−2∂iu‖p′i(·) <∞, we obtain

lim
n→+∞

N∑
i=1

∫
Ω

|∂iu|pi(x)−2∂iu(∂iun − ∂iu) dx = 0. (3.38)

From (3.37) and (3.38) we obtain (3.36).
From (2.2) we get that

∆n,i > 0, i ∈ {1, . . . , N}. (3.39)

Then, by (3.39) and (3.36) we obtain

∆n,i → 0, strongly in L1(Ω), i ∈ {1, . . . , N}. (3.40)

By extracting a subsequence (still denoted by (un) ), we conclude that

∆n,i −→ 0 a.e. in Ω, i ∈ {1, . . . , N}. (3.41)

So there is a subset Ω′ ⊂ Ω where |Ω′| = 0, and ∀x ∈ Ω− Ω′

|∂iu(x)| <∞, and ∆n,i → 0

By (3.41), we get

∆n,i(x) ≤ φ(x), (3.42)

for some functions φ.
Let’s prove the existence of a function ψ such that∣∣∂iun(x)

∣∣ ≤ ψ(x). (3.43)

By (3.42) and (2.2), we obtainφ(x) ≥ c
(

(|∂iun| − |∂iu|)p
−
− − 1

)
, if pi(x) ≥ 2

φ(x) ≥ c′
(
|∂iun|−|∂iu|
|∂iun|+|∂iu|+1

)2

, if 1 < pi(x) < 2.
(3.44)

Then, (3.44) implies (3.43).
We proceed by contradiction to prove that

∂iun(x) −→ ∂iu(x) in Ω− Ω′. (3.45)

Suppose there exists a ∈ Ω− Ω′ such that lim
n→+∞

∂iun(a) 6= ∂iu(a).

So, Bolzano Weierstrass Theorem implies that

∂iun(a) −→ η ∈ R. (3.46)
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By passing to the limit in ∆n,i(a) when n −→ +∞ and using (3.46), we obtain(
|η|pi(a)−2η − |∂iu(a)|pi(a)−2∂iu(a)

)
(η − ∂iu(a)) = 0, (3.47)

By (3.47) and (2.2), we conclude that η = ∂iu(a). This gives us (3.34). �

3.2. Proof of the Theorem 3.2 : By (3.34) and (3.35), we get that

|∂iun|pi(x)−2∂iun −→ |∂iu|pi(x)−2∂iu a.e. in Ω, i ∈ {1, . . . , N}. (3.48)

By (3.33) we obtain that∫
Ω

||∂iun|pi(x)−2∂iun|p
′
i(x) dx =

∫
Ω

|∂iun|pi(x) dx ≤ c, i ∈ {1, . . . , N}. (3.49)

Then, (3.49) and (2.3) implies that(
|∂iun|pi(x)−2∂iun

)
uniformly bounded in Lp

′
i(·)(Ω), i ∈ {1, . . . , N}. (3.50)

From Young’s inequality and that ∂iun ∈ Lpi(·)(Ω), we get ∀ε > 0∫
Ω

∣∣|∂iun|pi(x)−2∂iun
∣∣ dx =

∫
Ω

|∂iun|pi(x)−1 dx

≤ C(ε) + ε

∫
Ω

|∂iun|pi(x) dx

≤ C(ε) + εc = C ′(ε). (3.51)

So, we conclude that(
|∂iun|pi(x)−2∂iun

)
∈ L1(Ω), i ∈ {1, . . . , N}. (3.52)

So, through (3.48), (3.52), and (3.50), and Vitali’s Theorem [Lemma 3.4. in [8]], we derive, ∀i ∈ {1, . . . , N}

|∂iun|pi(x)−2∂iun −→ |∂iu|pi(x)−2∂iu , Strongly in L1(Ω). (3.53)

Now, through (3.34) and (3.35), we obtain that

(|gn|+ |un|+ |∂iun|)pi(x)−1 −→ (|g|+ |u|+ |∂iu|)pi(x)−1 a.e. in Ω. (3.54)

From another side, since gn, un, ∂iun ∈ Lpi(·)(Ω), we obtain, ∀i ∈ {1, . . . , N}∫
Ω

∣∣(|gn|+ |un|+|∂iun|)pi(x)−1
∣∣p′i(x)

dx =

∫
Ω

(|gn|+ |un|+ |∂iun|)pi(x) dx

≤c
∫

Ω

(
|gn|pi(x) + |un|pi(x) + |∂iun|pi(x)

)
dx ≤ C. (3.55)

Then, (3.55) and (2.3) implies that, ∀i ∈ {1, . . . , N}

(|gn|+ |un|+ |∂iun|)pi(x)−1 uniformly bounded in Lp
′
i(·)(Ω). (3.56)

Like the proof of (3.52) with the note that gn, un, ∂iun ∈ Lpi(·)(Ω), we can obtain, ∀i ∈ {1, . . . , N}(
(|gn|+ |un|+ |∂iun|)pi(x)−1

)
∈ L1(Ω). (3.57)

Then, from (3.57), (3.54), and (3.56), and Vitali’s Theorem, we obtain that, ∀i ∈ {1, . . . , N}

(|gn|+ |un|+ |∂iun|)pi(x)−1 −→ (|g|+ |u|+ |∂iu|)pi(x)−1 Strongly in L1(Ω). (3.58)

So through this, we can easily pass to the limit in (3.4). Thus Theorem 3.2 has been proven.



Unco
rre

cte
d Pro

of

12 M. NACERI

Acknowledgment

The author would like to thank the referees for their comments and suggestions.

There is no conflict of interest, nor is there any funding.

References
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