[1] M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering,
vol. 149 of London Mathematical Society Lecture Note Series, Cambridge University Press,
Cambridge, 1991. DOI 10.1017/CBO9780511623998.
[2] A. Bekir, The exp-function method for ostrovsky equation, International Journal of Nonlinear
Sciences and Numerical Simulation, 10 (2009), 735–740.
[3] A. Bekir and A. El Achab, Traveling wave solutions to the k(m, n) equation with generalized
evolution using the first integral method, New Trends in Mathematical Sciences, 2 (2014), 12–17.
[4] P. J. Blennerhassett, On the generation of waves by wind, Philos. Trans. Roy. Soc. London Ser.
A, 298 (1980/81), 451–494. DOI 10.1098/rsta.1980.0265.
[5] N. Bourbaki, Elements of mathematics. Commutative algebra, Hermann, Paris; Addison-Wesley
Publishing Co., Reading, Mass., 1972. Translated from the French.
[6] C. Chun, Solitons and periodic solutions for the fifth-order KdV equation with the Exp-function
method, Phys. Lett. A, 372 (2008), 2760–2766. DOI 10.1016/j.physleta.2008.01.005.
[7] X. Deng, Travelling wave solutions for the generalized burgers–huxley equation, Applied Mathematics
and Computation, 204 (2008), 733–737.
[8] F. Fang and Y. Xiao, Stability of chirped bright and dark soliton-like solutions of the cubic complex
ginzburg–landau equation with variable coefficients, Optics communications, 268 (2006),
305–310.
[9] Z. Feng, On explicit exact solutions to the compound Burgers-KdV equation, Phys. Lett. A, 293
(2002), 57–66. DOI 10.1016/S0375-9601(01)00825-8.
[10] J.-H. He and M. A. Abdou, New periodic solutions for nonlinear evolution equations using Expfunction
method, Chaos Solitons Fractals, 34 (2007), 1421–1429. DOI 10.1016/j.chaos.2006.05.
072.
[11] R. Hirota, Exact solution of the korteweg¯de vries equation for multiple collisions of solitons,
Phys. Rev. Lett., 27 (1971), 1192–1194. DOI 10.1103/PhysRevLett.27.1192.
[12] C. Huai-Tang and Z. Hong-Qing, New double periodic and multiple soliton solutions of the
generalized (2 + 1)-dimensional Boussinesq equation, Chaos Solitons Fractals, 20 (2004), 765–
769. DOI 10.1016/j.chaos.2003.08.006.
[13] K.-i. Maruno, A. Ankiewicz, and N. Akhmediev, Exact soliton solutions of the one-dimensional
complex Swift-Hohenberg equation, Phys. D, 176 (2003), 44–66. DOI 10.1016/S0167-2789(02)
00708-X.
[14] M. Miura, B¨acklund Transformation, Springer, Berlin, 1978.
[15] H. T. Moon, P. Huerre, and L. G. Redekopp, Three-frequency motion and chaos in the GinzburgLandau
equation, Phys. Rev. Lett., 49 (1982), 458–460. DOI 10.1103/PhysRevLett.49.458.
[16] K. R. Raslan, The first integral method for solving some important nonlinear partial differential
equations, Nonlinear Dynam., 53 (2008), 281–286. DOI 10.1007/s11071-007-9262-x.
[17] N. Taghizadeh, M. Mirzazadeh, and F. Farahrooz, Exact solutions of the nonlinear schr¨odinger
equation by the first integral method, Journal of Mathematical Analysis and Applications, 374
(2011), 549–553.
[18] F. Ta¸scan and A. Bekir, Analytic solutions of the (2 + 1)-dimensional nonlinear evolution
equations using the sine-cosine method, Appl. Math. Comput., 215 (2009), 3134–3139. DOI
10.1016/j.amc.2009.09.027.
[19] F. Tascan, A. Bekir, and M. Koparan, Travelling wave solutions of nonlinear evolution equations
by using the first integral method, Communications in Nonlinear Science and Numerical
Simulation, 14 (2009), 1810–1815.
[20] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, vol. 68 of Applied
Mathematical Sciences, Springer-Verlag, New York, second ed., 1997. DOI 10.1007/
978-1-4612-0645-3.
[21] M. Wang, X. Li, and J. Zhang, The (
G′
G
)-expansion method and travelling wave solutions of
nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417–423.
DOI 10.1016/j.physleta.2007.07.051.
[22] A.-M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput.
Modelling, 40 (2004), 499–508. DOI 10.1016/j.mcm.2003.12.010.
[23] Y. Zhou, M. Wang, and T. Miao, The periodic wave solutions and solitary wave solutions for
a class of nonlinear partial differential equations, Physics Letters A, 323 (2004), 77–88.