Generalized Solutions for Conformable Schrödinger Equation with Singular Potentials

Document Type : Research Paper

Authors

1 Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, PO Box 532, Beni Mellal, 23000, Morocco.

2 Department of Mathematics and Computer Science, Faculty of Sciences, PO Box 2121, Tetouan, Morocco.

Abstract

This paper employs Colombeau algebra as a mathematical framework to establish both the existence and uniqueness of solutions for the fractional Schrödinger equation when subjected to singular potentials. A noteworthy contribution lies in the introduction of the concept of a generalized conformable semigroup, marking the first instance of its application. This innovative approach plays a pivotal role in demonstrating the sought-after results within the context of the fractional Schrödinger equation. The utilization of Colombeau algebra, coupled with the introduction of the generalized conformable semigroup, represents a novel and effective strategy for addressing challenges posed by singular potentials in the study of this particular type of Schrödinger equation.

Keywords

Main Subjects


  • [1] A. Benmerrous, L. S. Chadli, A. Moujahid, M. Elomari, and S. Melliani, Conformable cosine family and nonlinear fractional differential equations, FILOMAT, 38(9) (2024), 3193-3206.
  • [2] A. Benmerrous, L. S. Chadli, A. Moujahid, M. H. Elomari, and S. Melliani, Generalized Cosine Family, Journal of Elliptic and Parabolic Equations, 8(1) (2022), 367-381.
  • [3] A. Benmerrous, L. S. Chadli, A. Moujahid, M. Elomari, and S. Melliani, Generalized Fractional Cosine Family, International Journal of Difference Equations (IJDE), 18(1) (2023), 11-34.
  • [4] A. Benmerrous, L. S. Chadli, A. Moujahid, M. Elomari, and S. Melliani, Generalized solutions for time ψ−fractional heat equation, Filomat, 37 (2023), 9327–9337.
  • [5] A. Benmerrous, L. S. Chadli, A. Moujahid, M. Elomari, and S. Melliani, Generalized solution of Schr¨odinger equation with singular potential and initial data, Int. J. Nonlinear Anal. Appl, 13(1) (2022), 3093-3101.
  • [6] A. Benmerrous, L. S. Chadli, A. Moujahid, M. Elomari, and S. Melliani, Solution of Non-homogeneous Wave Equation in Extended Colombeau Algebras, International Journal of Difference Equations (IJDE), 18(1) (2023), 107-118.
  • [7] A. Benmerrous, L. S. Chadli, A. Moujahid, M. Elomari, and S. Melliani, Solution of Schr¨odinger type Problem in Extended Colombeau Algebras, In 2022 8th International Conference on Optimization and Applications (ICOA), (2022), 1-5.
  • [8] J. Bourgain, Global solutions of nonlinear Schr¨odinger equations, AMS, Colloquium Publications, 46 (1999).
  • [9] L. S. Chadli, A. Benmerrous, A. Moujahid, M. Elomari, and S. Melliani, Generalized Solution of Transport Equation, In Recent Advances in Fuzzy Sets Theory, Fractional Calculus, Dynamic Systems and Optimization (2022), 101-111.
  • [10] J. F. Colombeau, Elementary Introduction in New Generalized Functions, North Holland, Amsterdam, 1985.
  • [11] J. F. Colombeau, New Generalized Function and Multiplication of Distribution, North Hol- land, Amsterdam / New York / Oxford, 1984.
  • [12] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new Definition Of Fractional Derivative, J. Comput. Appl. Math., 264 (2014), 65-70.
  • [13] S. Nakamura, Lectures on Schr¨odinger operators, Lectures given at the University of Tokyo, October 1992, February 1993.
  • [14] M. Oberguggenberger, Generalized functions in nonlinear models a survey, Nonlinear Analysis, 47 (2001), 50495040.
  • [15] D. Rajterc Ciric and M. Stojanovic, Convolution-type derivatives and transforms of Colombeau generalized stochastic processes, Integral Transforms Spec. Funct., 22(45) (2011), 319-326.
  • [16] M. Reed and B. Simon, Methods of Modern Mathematical Physics, II: Fourier analysis, self-adjointness, Academic Press, NewYork, 1975.
  • [17] M. Stojanovic, a Extension of Colombeau algebra to derivatives of arbitrary order Dα; α ∈ 2R+∪{0}: Application to ODEs and PDEs with entire and fractional derivatives, Nonlinear Analysis, 71 (2009), 5458- 5475.
  • [18] M. Stojanovic, Fondation of the fractional calculus in generalized function algebras, Analysis and Applications, 10(4) (2012), 439-467.
  • [19] M. Stojanovic, Nonlinear Schr¨odinger equation with singular potential and initial data, Nonlinear Analysis, 64 (2006), 1460-1474.
  • [20] C. L. Zhi and B. Fisher, Several products of distributions, on Rm. Proc R Soc Lond A426, (1989), 425–439.