A mathematical study on the non-linear boundary value problem of a porous fin

Document Type : Research Paper

Authors

Research Centre and PG Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.

Abstract

An analytical study of two different models of rectangular porous fins are investigated using a new approximate analytical method, the Ananthaswamy-Sivasankari method. The obtained results are compared with the numerical solution, which results in a very good agreement. The impacts of several physical parameters involved in the problem are interlined graphically. Fin efficiency and the heat transfer rate are also calculated and displayed. The result obtained by this method is in the most explicit and simple form. The convergence of the solution determined is more accurate as compared to various analytical and numerical methods.

Keywords

Main Subjects


  • [1] M. Alkam and M. Al-Nimr,Improving the performance of double-pipe heat exchangers by using porous substrates, Int. J. Heat Mass Transfer,42 (1999), 3609–3618.
  • [2] S. R. Amirkolaei, D. D. Ganji, and H. Salarian, Determination of temperature distribution for porous fin which is exposed to Uniform Magnetic Field to a vertical isothermal surface by Homotopy Analysis Method and Collocation Method, Indian J. Sci. Res., 1(2) (2014), 215–222.
  • [3] A. Aziz and M. N. Bouaziz, A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity, Energy Convers. Manage., 52 (2011), 2876–2882.
  • [4] Balaram Kundu and Dipankar Bhanja, An analytical prediction for performance and optimum design analysis of porous fins, International Journal of Refrigeration, 34 (2011), 337–352.
  • [5] J. Chitra,V. Ananthaswamy, S. Sivasankari, and Seenith Sivasaundaram, A new approximate analytical method (ASM) for solving non-linear boundary value problem in heat transfer through porous fin, Mathematics in Engineering, Science and Aerospace (MESA) (ISSN: 2041-3065), 14(1) (2023), 53–69.
  • [6] R. Das and K. Dilip Prasad, Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm, Swarm and Evolutionary Computation, 23 (2015), 27–39.
  • [7] R. Das and K. T. Ooi, Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement, Energy Conversion and Management, 66 (2013), 211–219.
  • [8] Dipankar Bhanja, Balaram Kundu, and Pabitra Kumar Mandal, Thermal analysis of porous pin fin used for electronic cooling, Procedia Engineering, 64 (2013), 956–965.
  • [9] D. D. Ganji, Y. Rostamiyan, I. Rahimi Petroudi, and M. Khazayi Nejad, Analytical investigation of nonlinear model arising in heat transfer through the porous fin, Thermal sciences, 18 (2014), 409–417.
  • [10] S. E. Ghasemi, P. Valipour, M. Hatami, and D. D. Ganji, Heat transfer study on solid and porous convective fins with temperature-dependent heat generation using efficient analytical method, Journal of Central South University, 21(12) (2014), 4592–4598.
  • [11] S. E. Ghasemi, M. Hatami, and D. D. Ganji, Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation, Case Studies in Thermal Engineering, 4 (2014), 1–8.
  • [12] B. J. Gireesha and G. Sowmya, Heat transfer analysis of an inclined porous fin using differential transform method, International Journal of Ambient Energy, 43(1) (2020), 3189–3195.
  • [13] M. Hatami and D. D. Ganji, Thermal behaviour of longitudinal convective–radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4), Ceramics International, 40(5) (2015), 6765–6775.
  • [14] M. Hatami, G. R. M. Ahangar, D. D. Ganji, and K. Boubaker, Refrigeration efficiency analysis for fully wet semi-spherical porous fins, Energy Conversion and Management, 84 (2014), 533–540.
  • [15] M. Hatami and D. D. Ganji, Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method, Energy Conversion and Management, 78 (2014), 347–358.
  • [16] M. Hatami, A. Hasanpour, and D. D. Ganji, Heat transfer study through porous fins (Si3N4 and Al) with temperature-dependent heat generation, Energy Conversion and Management, 74 (2013), 9–16.
  • [17] H. A. Hoshyar, D. D. Ganji, and A. R. Majidian, Least square method for porous fin in the presence of uniform magnetic field, Journal of Applied Fluid Mechanics, 9 (2016), 661–668.
  • [18] H. H. Jasim and M. S. S¨oylemez, Optimization of a rectangular pin fin using rectangular perforations with different inclination angles, International Journal of Heat and Technology, 35(4) (2017), 969–977.
  • [19] F. Khani, M. Ahmadzadeh Rajib, and H. Hamedi Nejad, Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient, Communications in Nonlinear Science and Numerical Simulation, 14(8) (2009), 3327–3338.
  • [20] S. Kiwan and M. Al-Nimr, Enhancement of heat transfer using porous fins, ASME J. Heat Transfer, 123(4) (2001), 790–795.
  • [21] S. Kiwan and O. Zeitoun, Natural convection in a horizontal cylindrical annulus using porous fins, Int. J. Numer. Methods Heat Fluid Flow, 18(5) (2008), 618–634.
  • [22] S. Kiwan, Effect of radiative losses on the heat transfer from porous fins, Int. J. Therm. Sci., 46 (2007), 1046–1055.
  • [23] Kuljeet Singh, Ranjan Das, and Balaram Kundu, Approximate analytical method for porous stepped fins with temperature-dependent heat transfer parameters, Journal of Thermo physics and Heat Transfer, 30 (2016), 661– 672.
  • [24] R. Li, J. Manafian, H. A. Lafta, H. A. Kareem, K. F. Uktamov, and M. Abotaleb, The nonlinear vibration and dispersive wave systems with cross-kink and solitary wave solutions, International Journal of Geometric Methods in Modern Physics, 19(10) (2022).
  • [25] R. Li, Z. A. B. Sinnah, Z. M. Shatouri, J. Manafian, M. F. Aghdaei, and A. Kadi, Different forms of optical soliton solutions to the Kudryashov’s quintuple self-phase modulation with dual-form of generalized nonlocal nonlinearity, Results in Physics, 46 (2023).
  • [26] S. Mosayebidorcheh, M. Farzinpoor, and D. D. Ganji, Transient thermal analysis of longitudinal fins with internal heat generation considering temperature-dependent properties and different fin profiles, Energy Conversion and Management, 86 (2014), 365–370,
  • [27] G. A. Oguntala, M. G. Sobamowo, A. A. Yinusa, and R. Abd-Alhameed, Application of approximate analytical technique using the Homotopy perturbation method to study the inclination effect on the thermal behaviour of porous fin heat sink, Mathematical and Computational Applications, 23 (2018), 62,
  • [28] G. A. Oguntala, M. G. Sobamowo, R. Abd-Alhameed, and J. Noras, Numerical investigation of inclination on the thermal performance of porous fin heat sink using Pseudo-spectral collocation method, Karbala International Journal of Modern Science, 5(1) (2009), 19–26.
  • [29] G. A. Oguntala, R. A. Abd-Alhameed, M. G. Sobamowo, and I. Danjuma, Performance, thermal stability and optimum design analyses of rectangular fin with temperature-dependent thermal properties and internal heat generation, Journal of Computational Applied Mechanics, 49 (2018), 37–43,
  • [30] G. A. Oguntala, R. A. Abd-Alhameed, M. G. Sobamowo, and N. Eya, Effects of particles deposition on thermal performance of a convective-radiative heat sink porous fin of an electronic component, Thermal Science and Engineering Progress, 6 (2018), 177–185.
  • [31] G. A. Oguntala, R. A. Abd-Alhameed, and M. G. Sobamowo, On the effect of magnetic field on thermal performance of convective-radiative fin with temperature-dependent thermal conductivity, Karbala International Journal of Modern Science, 4 (2018), 1–11.
  • [32] T. Patel and R. Meher, Thermal analysis of porous fin with uniform magnetic field using Adomian decomposition Sumudu transform method, Nonlinear Engineering, 6(3) (2017), 191–200.
  • [33] R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd edn, Chap. 12. Hemisphere, Washington, DC,(1992).
  • [34] S. Sivasankari and V. Ananthaswamy, A mathematical study on non-linear ordinary differential equation for Magnetohydrodynamic flow of the Darcy-Forchheimer nanofluid, Computational Methods for Differential Equations, 11(4) (2023), 696–715.
  • [35] S. Sivasankari, V. Ananthaswamy, and Seenith Sivasundaram, A new approximate analytical method for solving some non-linear initial value problems in physical sciences, Mathematics in Engineering, Science and Aerospace (MESA) (ISSN: 2041-3065), 14(1) (2023), 145-162.
  • [36] M. G. Sobamowo, Combined impacts of fin surface inclination and Magnetohydrodynamic on the thermal performance of a convective-radiative porous fin, Journal of Applied and Computational Mechanics, 8(3) (2022), 940–948.
  • [37] M. G. Sobamowo, K. C. Alaribe, O. A. Adeleye, A. A. Yinusa, and O. A. Adedibu, A study on the impact of Lorentz force on the thermal behaviour of a convective-radiative porous fin using Differential Transformation Method, International Journal of Mechanical Dynamics and Analysis, 6(+1) (2020), 45–59.
  • [38] M. G. Sobamowo, O. M. Kamiyo, and O. A. Adeleye, Thermal performance analysis of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation, Thermal Science and Engineering Progress, 1 (2017), 39–52.
  • [39] M. G. Sobamowo, Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation using Galerkin’s method of weighted residual, Applied Thermal Engineering, 99 (2016), 1316–1330.
  • [40] A. Taklifi, C. Aghanajafi, and H. krami, The Effect of MHD on a Porous Fin Attached to a Vertical Isothermal Surface, Transp. Porous Med., 85 (2010), 215–231.