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Abstract

An analytical study of two different models of rectangular porous fins are investigated using a new approximate

analytical method, the Ananthaswamy-Sivasankari method. The obtained results are compared with the numerical
solution, which results in a very good agreement. The impacts of several physical parameters involved in the

problem are interlined graphically. Fin efficiency and the heat transfer rate are also calculated and displayed.

The result obtained by this method is in the most explicit and simple form. The convergence of the solution
determined is more accurate as compared to various analytical and numerical methods.
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1. Introduction

Significant applications for increasing heat transfer concerning hot surfaces of different appliances can be found
in industrial, technological, and engineering machinery, such as air conditioners, car radiators, computer equipment,
CPUs, refrigerators, etc. The rate of heat transmission from the heated exterior to the nearby fluids is increased for
this purpose by using the optimum extended surfaces. The choice of a certain fin type is influenced by the primary
surface’s geometry. The production, pricing, and ease of installation of the materials are often taken into account
while determining a fin’s profile. Finding the fin profile that offers the fastest heat transfer rate for a specific fin has
been the focus of numerous researchers. The optimal shape of the fin, which can be circular, parabolic, or rectangular,
has been described. Because of its simple construction and straightforward manufacture, the rectangular fin was most
widely used.

Alkam and Al-Nimr [1] employed porous materials with significant thermal conductivity to enhance the thermal
performance of various thermal systems. The influence of utilizing porous fins on the transmission of heat from a
heated flat the surface was examined numerically by Kiwan and Al-Nimr [20]. Heat transmission via a porous fin
situated on a vertical surface was numerically addressed by Kiwan [22] adopting laminar natural convection as well
as MHD impact of laminar mixed convection was studied by Taklifi et al. [40]. Furthermore, Kiwan and Zeitoun
[21] studied the impact of employing porous fins in the annulus of two focused cylinders numerically. Comparing the
application of porous fins to traditional solid fins, they discovered that the latter increased the heat transfer coefficient
by almost 70%.

Modern engineering, applied mathematics, physics, and newer disciplines of research, particularly heat transfer
difficulties, all rely extensively on fin issues and phenomena. Many approximation analytical strategies have been
utilized to tackle these kinds of problems, including the HAM (Khani et al. [19]), Least Square Method, and DTM (Aziz
and Bouaziz [3]; Hatami et al. [16]). Oguntala et al. [27–31] used a variety of methods to tackle fin problems, including
the Daftardar-Gejiji and Jarari method (DJM) [31], the Haar wavelet collocation technique [29], the Chebyshev
collocation spectral approaches [30], and the Homotopy perturbation method [27]. In a naturally convective porous
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fin exposed to some specified temperature, Das et al. [6, 7] tested unidentified and conceivable mixtures of variables.
He calculated multiple fin characteristics in order to solve an inverse problem using simulated annealing.

Recently, research on porous fin performance with optimal design assessment has been a fascinating topic. Amirko-
laei et al. [2] analyzed the MHD of a permeable fin attached to a vertically isothermal surface exhibiting temperature-
dependent internal heat generation with the help of HAM. In Balram Kundu et al. [4], a detailed analytical estimate
regarding porous fin performance and optimal design evaluation was presented. Dipankar Bhanja et al. [8] thermally
analyzed the porous pin fin utilized in electronic cooling via ADM. Ganji et al. [9] applied two methods (VIM and
PM) to resolve the temperature gradient of a porous fin. Ghasemi et al. [11] examined two different cases of convective
fin using the DTM (Differential transformation method). Also, he investigated both solid as well porous fins [10] via
DTM. Hatami et al. [14] evaluated heat transmission equations with entirely soaked hemispherical permeable fins via
the least squares technique (LSM [15, 17]), and they obtained the most exact analytical solution for them. Also, he
studied and reported that for fin shapes: convex, rectangular, exponential, and triangular, the rate related to heat
transfer varied from maximum to minimum values, respectively [13]. Nowadays, numerous solution types include
periodic, breather, and soliton solutions for these types of non-linear issues and wave systems [24, 25].

Although fin inclination is crucial regarding the porous fin, numerous authors describe into how it affects thermal
performance. Gireesha et al. [12] have shown the impacts of radiation and also natural convection on a longitudinal
porous fin connected to an inclined surface using Darcy’s model via DTM. In several other studies, Sobamowo et
al.[37–39], Gireesha and Sowmya [12], Jasim et al. [18], and Oguntala et al. [28] examined the consequences of fin
inclination on the thermal performance associated with elongated surfaces. Singh et al. [23] examined the thermal
evaluation of a porous stepped fin constructed with several porous ceramic components. The dynamic behavior of fins
having various forms and varying thermal characteristics, including the internal generation of heat, was explored by
Mosayebidorcheh et al. [26].

Due to the majority of the works using numerical approaches, we were compelled by the aforementioned studies
to look into these kinds of porous fin challenges via analytical techniques. In this study, we looked at two models
of rectangular fins. For these two models, we apply ASM to achieve an approximate analytical solution. A good
agreement is seen when the outcomes are compared to the numerical solution. The fin efficiency as well as the heat
transfer rate are computed and graphically depicted.

2. Mathematical description of the problem

Here we have considered two mathematical models. One is a rectangular fin having a constant magnetic field,
while the other is a convective-radiative longitudinal porous fin inclined at some angle. The brief constructions for
the mentioned models are mathematically described and given below.

2.1. Rectangular porous fin having a unique magnetic field in such a vertical isothermal surface-radiate
heat transfer, a finite-length fin with an insulated tip, and Darcy’s model to realistically simulate the
flow through porous media [32].
. Here, a rectangular porous fin Figure 1 with uniform cross-sectional area A, length L, width W , and thickness t is
taken into consideration under the following assumptions:
•The fin is constructed of a porous material that enables a flow to pass through it.
•The single-phase fluid has saturated the porous medium, which is homogeneous and isotropic.
•When a magnetic field is uniform and is supplied in the y-axis direction, the temperature within the fin is only a
term which contains x.
•Darcy’s form is employed to analyze the velocity of the flow within a porous medium exhibiting negligible influence
of the induced and imposed magnetic field together with the induced electrical field owing to the polarization effect.

The one-dimensional energy balance equation for the slice segment of the fin thickness ∆x under steady-state
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Figure 1. The geometry of a rectangular fin configuration.

conditions is provided by [19, 40],

q(x)− q(x+ ∆x) =mcp (T (x)− T (∞)) + hP (1− ε) (T (x)− T (∞)) +
(JC × JC)

σ

+ P ∆xσst ε̄
(
T (x)4 − y

ε
T (∞)4

)
, (2.1)

where JC is the conduction current intensity, and it is described by

JC = σ (V ×B + E) , (2.2)

and, J is the total current intensity specified by

J = JC + ρ ε̄ V. (2.3)

The fluid’s mass flow rate m̄ via a porous medium is expressed as

m̄ = ρw v̄w ∆. (2.4)

When the flow along an impermeable medium is taken into account along with the passage velocity v̄w, the results of
Darcy’s model is as follows:

v̄w =
k β g (T (x)− T (∞))

v
. (2.5)

At the fin’s base, conduction and radiation have the following relationship:

qfin base = qradiation + qconduction. (2.6)

The Rosseland diffusion estimates [33] are defined by Fourier’s law of conduction and the radiation heat flux term as
follows:

qconduction = keff Ab
dT

dx
, qradiation =

4σst
3βr

dT 4

dx
. (2.7)

If Eqs. (2.2)-(2.7) are substituted for Eq. (2.1), it results in

d

dx

[
dT

dx
+

4σ

3βr keff

dT 4

dx

]
=
ρ cp g k β

b v keff
(T (x)− T (∞))

2
+
hP (1− ε)

keff
(T (x)− T (∞))

+
(JC × JC)

σ keff Ab
+

P σst ε̄

keff Ab

(
T (x)4 − T (∞)4

)
. (2.8)

The electromagnetic force in Eq. (2.1) assumes its form (JC×JC)
σ = σ B2

0 u
2 when the magnetic field and the induced

current are neglected.
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Figure 2. Schematic configuration of the convective-radiative longitudinal porous fin subjected to a
magnetic field.

By employing the dimensionless parameters

θ =
T (x)− T∞
Tb − T∞

, ζ =
x

L
, θb =

Tb
T∞

, Ra =
g k β b (Tb − T∞)

y v kr
, Nc =

P bh

keff A
,

Nr =
4σst LT

3
∞

keff
, H =

σ B2
0 u

2

k0A
, Rd =

4σst T
3
∞

3βr keff
. (2.9)

Eq. (2.8) yields

d2θ

dζ2
− Ra

(1 + 4Rd)
θ2 − [Nc (1− ε) +Nr +H]

(1 + 4Rd)
θ = 0, (2.10)

with the boundary conditions

dθ

dζ
ζ=1 = 0, and θζ=0 = 1, (2.11)

where Ra stands for a modified Rayleigh number, Nc means a convection–conduction parameter, Nr is a surface-
ambient radiation parameter, H refers to a Hartman parameter, Rd represents a Radiation–conduction parameter and
ε is porosity. In this article, we considered and investigated a finite-length fin with only an insulated tip, where there
is no heat transmission.

2.2. The combined effects of MHD in addition to fin surface tilting together on the thermal behavior
of a convective-radiative porous fin exhibiting temperature-invariant thermal transmission [36].
. As seen in Figure 2, consider a longitudinal rectangular fin with pores capable of radiative and convective heat
transmission. As depicted in Figure 3, the fin has an angle of inclination γ with respect to the horizontal axis (x-axis).
The porous medium is considered to be homogeneous, isotropic, and saturated with single-phase fluid in order to
establish the porous fin’s thermal model. The fluid surface around the fin and its physical and thermal characteristics
are fixed. According to Figure 2, the only place where the temperature changes in the fin is along its length and the
fin base makes perfect contact with the primary surface.

The energy balance is determined by the assumptions and with the help of Darcy’s model, as follows:

qx −
(
qx +

δq

δx
dx

)
= ṁ cp (T − Ta) + hP (1− ε) (T − Ta) dx+ σ εP

(
T 4 − T 4

a

)
dx+

(JC × JC)

σ
dx. (2.12)
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Figure 3. Schematic configuration of a convective-radiative longitudinal porous fin inclined at an
angle γ to the horizontal axis.

The mass flow rate of the fluid through the pores is expressed as

ṁ = ρ u(x)W dx. (2.13)

Moreover, the fluid velocity is specified as

u(x) =
g K bR (T − Ta) sin(γ)

v
. (2.14)

Then, Eq. (2.12) becomes

qx −
(
qx +

δq

δx
dx

)
=
ρ cp g K βR

v
(T − Ta)

2
sin(γ) dx+ hP (1− ε) (T − Ta) dx

+ σ εP
(
T 4 − T 4

a

)
dx+

(JC × JC)

σ
dx. (2.15)

As dx→ 0, Eq. (2.15) reduces

−dqx
dx

=
ρ cp g K βR

v
(T − Ta)

2
sin(γ) + hP (1− ε) (T − Ta) + σ εP

(
T 4 − T 4

a

)
+

(JC × JC)

σ
. (2.16)

Applying Fourier’s law to the solid’s heat conduction, one must:

qc = −keff Acr
dT

dx
, (2.17)

where the fin’s effective thermal conductivity is stated as

keff = −φkf + (1− φ) ks. (2.18)

The radiative heat transmission rate can be expressed in the following way using the Rosseland Diffusion Approximation
[33]:

qR = −4σ Acr
3βR

dT 4

dx
. (2.19)

From Eqs. (2.17) and (2.19), the total rate for heat transfer is obtained by

qT = −keff Acr
dT

dx
− 4σ Acr

3βR

dT 4

dx
. (2.20)
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Substitution of Eq. (2.20) into Eq. (2.16) leads to

d

dx

(
keff Acr

dT

dx
+

4σ Acr
3βR

)
=
ρ cp g K βR

v
(T − Ta)

2
sin(γ) + hP (1− ε) (T − Ta)

+ σ εP
(
T 4 − T 4

a

)
+

(JC × JC)

σ
. (2.21)

The governing equation for the necessary heat transfer is provided by the expansion of the first term to Eq. (2.21).

d2T

dx2
+

4σ

3 keff βR

d

dx

(
dT 4

dx

)
− ρ cp g K βR

t v keff
(T − Ta)

2
sin(γ)

− hP (1− ε) (T − Ta)

t keff
− σ ε

t keff

(
T 4 − T 4

a

)
− (JC × JC)

σ
= 0. (2.22)

The boundary conditions are:

x = 0,
dT

dx
= 0,

x = L, T = Tb. (2.23)

But

(JC × JC)

σ
= σ B2

0 u
2. (2.24)

After substituting Eq. (2.24) with Eq. (2.22), we have

d2T

dx2
+

4σ

3 keff βR

d

dx

(
dT 4

dx

)
− ρ cp g K βR

t v keff
(T − Ta)

2
sin(γ)

− hP (1− ε) (T − Ta)

t keff
− σ ε

t keff

(
T 4 − T 4

a

)
− σ B2

0 u
2

keff Acr
(T − Ta) = 0. (2.25)

The term T 4 can also be produced as a linear function of temperature as

T 4 = T 4
a + 4T 3

a (T − Ta) + 6T 2
a (T − Ta)

2
... u 4T 3

a T − 3T 4
a . (2.26)

When Eq. (2.26) is substituted into Eq. (2.25), it yields

d2T

dx2
+

16σ

3 keff βR

(
d2T

dx2

)
− ρ cp g K βR

t v keff
(T − Ta)

2
sin(γ)

− hP (1− ε) (T − Ta)

t keff
− 4T 3

a σ ε

t keff
(T − Ta)− σ B2

0 u
2

keff Acr
(T − Ta) = 0. (2.27)

Applying the following non-dimensional parameters from Eq. (2.28) to Eq. (2.27),

X =
x

L
, θ =

T − Ta
Tb − Ta

, Sh =
g K βR (Tb − T∞)L

αv kr
, Nc =

hL

keff t
, H =

σ B2
0 u

2 b

keff Ab
,

Rd =
4σst T

3
a

3βR keff
, Nc =

4σst LT
3
a

t keff
. (2.28)

One acquires the non-dimensional form of the governing Eq. (2.27) as presented in Eq. (2.29),

(1 + 4Rd)
d2θ

dX2
− Sh sin(γ) θ2 −Nc (1− ε) θ −H θ = 0, (2.29)

and the non-dimensional boundary conditions are given as follows:

X = 0,
dθ

dX
= 0,

X = 1, θ = 1. (2.30)
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3. Approximate analytical solution using the Ananthaswamy-Sivasankari Method

An effective technique known as the Ananthaswamy-Sivasankari method (ASM) is presented [5, 34, 35] for the
purpose of employing non-linear ordinary differential equations. The method described here can be used to resolve
both non-linear as well as linear differential equations. This method can also be easily modified to address other non-
linear problems, such as boundary value issues that occur in the chemical, physical, and applied sciences, particularly
fin issues. Moreover, the boundary and initial value problems can be solved using the new approach that has been
suggested. For the differential equation and its derivatives, additional boundary conditions can be generated.

The essential concept of ASM is described in Appendix A. We have assumed the solution, which has exponential
form and unknown parameters, according to the approach utilized. In order to determine the value of the unknown
parameter that appears in the solution, we have used the given boundary condition.

3.1. Approximate analytical solution for Model-1. The approximate analytical solution of the temperature
distribution in Eq. (2.10) that satisfies the conditions at the boundary are as follows:

θ(ζ) = l eb ζ +me−b ζ , (3.1)

θ′(ζ) = l b eb ζ −mbe−b ζ . (3.2)

Utilizing the conditions at the boundary in Eq. (2.11), we obtain the values of the parameters l, m and b as follows:

m =
eb

eb + e−b
and l =

e−b

eb + e−b
. (3.3)

Thus the Eq. (3.1), becomes

θ(ζ) =
e−b eb ζ + eb e−b ζ

eb + e−b
. (3.4)

Now, by putting the Eq. (3.4) into Eq. (2.10) and then simplifying, we obtain

b2
(
e−b eb ζ + eb e−b ζ

eb + e−b

)
− Ra

(1 + 4Rd)

(
e−b eb ζ + eb e−b ζ

eb + e−b

)2

− [Nc (1− ε) +Nr +H]

(1 + 4Rd)

(
e−b eb ζ + eb e−b ζ

eb + e−b

)
= 0. (3.5)

Now taking ζ = 0, Eq. (3.5) becomes

b2 − Ra
(1 + 4Rd)

− [Nc (1− ε) +Nr +H]

(1 + 4Rd)
= 0. (3.6)

On solving Eq. (3.6), we get the value of the parameter b which is given by

b = ±

√
Ra +Nc (1− ε) +Nr +H

(1 + 4Rd)
. (3.7)

Hence, an approximate analytical solution of the temperature is given by

θ(ζ) =
e−b eb ζ + eb e−b ζ

eb + e−b
, (3.8)

where b is obtained in Eq. (3.7).

3.1.1. Fin Efficiency. Fin efficiency is another way to describe fin attainment and it can be defined as

η =
qf
qmax

=
(1 + 4Rd)

dθ
dζ ζ=0

[Ra +Nc (1− ε) +Nr +H]
. (3.9)
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3.2. Approximate analytical solution for Model-2. The approximate analytical solution of the temperature
distribution in Eq. (2.29) that satisfies the boundary conditions are as follows:

θ(X) = l enX +me−nX , (3.10)

θ′(X) = l n enX −mne−nX . (3.11)

Utilizing the boundary conditions in Eq. (2.30), we obtain the values of the parameters l, m and n as follows:

l = m and l =
1

en + e−n
. (3.12)

Thus the Eq. (3.10), becomes

θ(X) =
enX + e−nX

en + e−n
. (3.13)

Now, by putting the Eq. (3.13) into Eq. (2.29) and then simplifying, we obtain

(1 + 4Rd) n
2

(
enX + e−nX

en + e−n

)
−Sh sin(γ)

(
enX + e−nX

en + e−n

)2

−Nc (1− ε)
(
enX + e−nX

en + e−n

)
−H

(
enX + e−nX

en + e−n

)
= 0. (3.14)

Now, taking X = 1 Eq. (3.14) becomes

(1 + 4Rd) n
2 − Sh sin(γ)−Nc (1− ε)−H = 0. (3.15)

On solving the Eq. (3.15), we get the value of the parameter n, which is given by

n = ±

√
Sh sin(γ) +Nc (1− ε) +H

(1 + 4Rd)
. (3.16)

Hence, an approximate analytical solution of the temperature is obtained by substituting Eq. (3.16) into Eq. (3.13)
as follows:

θ(X) =
coshnX

coshn
, (3.17)

where n is obtained in Eq. (3.16).

3.2.1. Thermal performance indicator: Rate regarding heat transfer in a porous fin. The rate for heat transfer from
the fin base is given by

qb = k Ac
dT

dx
. (3.18)

Using the non-dimensional parameters in Eq. (2.17), one arrives at the fin-base dimensionless heat transfer rate as

Qb =
q L

k Ac (Tb − T∞)
=

[
dθ

dX

]
X=1

. (3.19)

4. Results and discussion

Here, we have discussed the results obtained by this proposed method in graphical representation for the considered
models. For both models, we have derived an approximate analytical solution. By comparing those results with the
numerical solution, our results reach a considerable conclusion. The results are compared with the help of MATLAB
software. Numerous parameters involved in the problem were displayed without losing their significance.

When buoyancy and Lorentz forces are balanced, the flow is determined by the parameter Ra, which measures the
proportion of diffusion to thermal convection. The strength of surface radiation against conduction is measured by
parameter Nr, while the intensity of convection against conduction is represented by the parameter Nc. The ratio of
electromagnetic force with viscous force is analyzed by the parameter H.
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For Model-1: Figures 4 to 9 show a comparison regarding the numerical solution reported in [24] with the
analytical solution using Eq. (3.8) of dimensionless temperature θ(ζ) with the dimensionless fin length ζ for Eq.
(2.10). Figure 4 illustrates that by increasing the value of Nr, the temperature θ(ζ) falls. Strong cooling predicts less
radiant temperature distribution in the fin, as the results demonstrate when the fin temperature drops with Nr. Figure
5 demonstrates that the temperature θ(ζ) drops by raising the amount of Nc. The findings indicate that when Nc
increases, the fin temperature drops, leading to a more substantial drop in the local temperature in the insulated tip fin.
Figure 6 displays that as the value of Hartmann number H increases, the temperature θ(ζ) decreases. Figure 7 reveals
that the temperature θ(ζ) decreases as the modified Rayleigh number Ra raises. Consequently, when it comes to a
rectangular porous fin, the illustration in Figure 7 undoubtedly shows that the radiation-conduction variable exhibits
a minimal impact on the fin’s surface temperature. Figure 8 indicates that by increasing the radiation-conduction
parameter Rd, the temperature θ(ζ) increases. Figure 9 shows that the temperature θ(ζ) rises by increasing the
amount of the porosity parameter ε.

Figures 10 to 13 represent the fin efficiency η using Eq. (3.9) of Eq. (2.10). Figure 10 demonstrates the fin efficiency η
with the dimensionless modified Rayleigh number Ra. In this figure, by increasing the value of the porosity parameter
ε, the fin efficiency η drops. Figure 11 illustrates the fin efficiency η with the dimensionless radiation-conduction
parameter Rd. According to this figure, the fin efficiency η drops by increasing the value of the porosity parameter
ε. Figure 12 shows the fin efficiency η with the dimensionless surface ambient parameter Nr. This graph shows that
raising the porosity parameter ε value causes a decrease in fin efficiency. Figure 13 demonstrates the fin efficiency η
through the dimensionless convection-conduction parameter Nc. Based on this figure, the fin efficiency diminishes as
the value of the porosity parameter ε increases. Table 1 displays several dimensionless temperature θ(ζ) values that
were obtained by ASM, ADSTM, LSM, and NM for particular amounts of the parameters Nr, Nc, H, Ra, Rd, ε. This
table shows that the average absolute error percentage was 0.5. In comparison to our analytical method, selecting a
polynomial in ADSTM was quite tedious and evaluating values in LSM & NM take a lot of time. The comparison
reveals a strong agreement, as seen in Table 1 and Figures 4-9. For this reason, we are assured with the accuracy of
the current results.

For Model-2: Figures 14 to 19 depict a comparison of the numerical solution reported in [29] with the analytical
solution using Eq. (3.17) of dimensionless temperature θ(X) with the dimensionless fin length X for Eq. (2.29).
Figure 14 shows that by increasing the value of γ, the temperature θ(X) increases. The reason for the decrease in the
fin’s local temperature with increasing fin inclination is the increased force that drives for buoyancy and convection
of the fluid in action surrounding the expanded surface. Figure 15 demonstrates that the temperature θ(X) drops by
raising the amount of H. A drop in the temperature of the fin is the result of a boost in the Lorentz force, which is
caused by a rise in the magnetic parameter or Hartmann number. This resistive force prevents the fluid that works
surrounding the fin from moving. Figure 16 displays that as the dimensionless convection number Nc increases, the
temperature θ(X) decreases. This occurs because a higher level of heat is removed on the fin surface when convective
and radiative parameters rise, which subsequently raises the impacts of convective and radiative heat transfer upon
the fin surface. Consequently, when the convective and radiative factors go up, the fin’s surface temperature falls
(i.e. the fin temperature profile decreases) and its heat transfer rate grows. Relatively thick and short fins with
extreme thermal conductivity are implied by small amounts of the convective as well as radiative parameters, Nc and
Ra, whereas relatively thin and extended fins with minimal thermal conductivity are suggested by a large value of
the related parameters. Thus, minimal amounts of convective and radiative parameters promote the fin’s thermal
efficiency, meaning that a relatively thick, short fin with a high thermal conductivity is preferred. Figure 17 depicts
that the temperature θ(X) decreases as the dimensionless porosity parameter Sh rises. The fin temperature decreases
as the porosity parameter increases because of the increase in the permeability of the fin, which makes the working
fluid infiltrate more through the pores of the fin and increases the buoyancy force effect. Consequently, more heat
is taken away from the surface of the fin as the temperature falls more. This establishes that the thermal efficiency
of the fin increases as the Rayleigh number is enlarged. Figure 18 shows that by increasing the radiation-conduction
parameter Rd, the temperature θ(X) increases. Figure 19 indicates that the temperature θ(X) rises by increasing the
amount of porosity or void ratio ε.
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Figure 4. Variation of dimensionless surface ambient parameter on the temperature profile.

Figure 5. Effects of dimensionless convection-conduction parameter on the temperature profile.

Figures 20 to 23 represent the rate related to heat transfer using Eq. (3.19) of Eq. (2.29). Figure 20 depicts the
rate related to heat transfer Qb with the dimensionless radiation number Rd. According to this figure, by increasing
the value of the Hartmann number H, the rate of heat transfer Qb increases. Figure 21 shows the rate related to
heat transfer Qb with the dimensionless convection number Nc. Based on this figure, the rate related to heat transfer
rises by increasing the value of the porosity parameter Sh. Figure 22 displays the rate related to heat transfer with
the dimensionless porosity parameter Sh. This graph shows that raising the porosity or void ratio ε value causes a
decrease in heat transfer rate. Figure 23 demonstrates the rate related to heat transfer Qb with the dimensionless
porosity or void ratio ε. From this figure, the rate related to heat transfer increases as the value of the convection
number Nc rises. Table 2 examines the analytical and numerical results of dimensionless temperature θ(X) for some
particular values of the parameters. According to this table, the average absolute error percentage was 0.2.
The main contribution of our work is pointed out below:

• Analytical approximations were derived using the presented technique.
• For both models, the solution was given in explicit form and the results were plotted.
• The fin efficiency and heat transfer rate were calculated and displayed graphically.
• Furthermore, at smaller amounts of the fin inclination, convective, porous, magnetic, and radiative characteristics,

the porous fin with inclination is highly effective as well as efficient. To prevent thermal stability within the fin, these
parameters should be carefully chosen.

• In thermal and electronic systems, the current findings will assist in designing passive heat enhancement and
choosing the appropriate fin material.

• We have concluded from the two models that the technique used is significantly more precise than alternative
analytical and numerical approaches.
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Figure 6. Variation of the Hartmann parameter in the temperature profile.

Figure 7. Impacts of dimensionless modified Rayleigh number on the temperature profile.

Figure 8. Variation of dimensionless radiation-conduction parameter in the temperature profile.

Conclusion

Two different models of rectangular porous fins were analytically studied using a new approximate analytical
method, ASM, and the findings were compared with the numerical method, which resulted in a very good agreement.
The influence of different physical parameters taking part in the problem was illustrated graphically. The fin efficiency
and the rate related to heat transfer were also calculated and displayed. Furthermore, it has been discovered that this
technique is a strong mathematical tool that may be used to solve a wide range of linear as well as non-linear issues that
arise in various branches of science and engineering.This technique will be extended in the future to handle non-linear
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Figure 9. Effects of dimensionless porosity parameter on the temperature profile.

Figure 10. Effects of ε on fin efficiency with dimensionless modified Rayleigh number.

Figure 11. Effects of ε on fin efficiency with dimensionless radiation-conduction parameter.

PDEs and infinite boundary value problems. In the future, we can employ this method to solve the mathematical
models of non-linear partial differential equations in both dimensional and dimensionless form.
The following points are concluded from the results:
• For both models,the temperature drops as the values of the Hartmann number, radiation parameter, and convection
parameter rise.
• Both models experience a rise in temperature with increasing porosity, or void ratio and radiation number.
• The fin efficiency for model-1 increases with increasing porosity parameter values.
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Figure 12. Effects of ε on fin efficiency with dimensionless surface ambient parameter.

Figure 13. Effects of ε on fin efficiency with dimensionless convection-conduction parameter.

Figure 14. Variation of angle of inclination on the temperature profile.

• For model-2, increasing the porosity, convection, and Hartmann numbers enhances the rate related to heat transfer,
whereas increasing the void ratio decreases the rate related to heat transfer.
• The thermal performance of the fin is significantly influenced by the angle of inclination for model-2.
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Figure 15. Impacts of dimensionless Hartmann number in the temperature profile.

Figure 16. Variation of dimensionless convection number on the temperature profile.

Figure 17. Effects of dimensionless porosity parameter in the temperature profile.

Appendix

Appendix A: Basic Concept of the Ananthaswamy-Sivasankari Method [4, 6, 28]. Let us consider the
non-linear boundary value problem:

p : g(z, z′, z′′) = 0, (A. 1)
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Figure 18. Impacts of dimensionless radiation number on the temperature profile.

Figure 19. Variation of porosity or void ratio on the temperature profile.

Figure 20. Effects of Hartmann number H on heat transfer rate Qb with dimensionless radiation number.

where p indicates the second-order non-linear differential equation such that z = z(x, r, s, ...) in which r, s are given
parameters and x ∈ [L,U ] can be finite or infinite considering the associated conditions at the boundary:{

At x = L, z(x) = zL0
(or) z′(x) = zL1

,

At x = U, z(x) = zU0
(or) z′(x) = zU1

.
(A. 2)

Assume that the approximate analytical solution for the non-linear equations is an exponential function of the form

z(x) = kehx + le−hx. (A. 3)
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Figure 21. Effects of dimensionless porosity parameter Sh on heat transfer rate Qb with dimension-
less convection number.

Figure 22. Effects of porosity or void ratio ε on heat transfer rate Qb with dimensionless porosity parameter.

Figure 23. Effects of dimensionless convection number Nc on heat transfer rate Qb with porosity parameter.

By resolving the following non-linear differential equations, the unknown coefficients k and l are discovered:{
z(L) = kehL + le−hL = zL0

,

z′(L) = hkehL − hle−hL = zL1
,

(A. 4)

{
z(U) = kehU + le−hU = zU0

,

z′(U) = hkehU − hle−hU = zU1
.

(A. 5)
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Table 1. Comparison of numerical and analytical solutions of Eq. (2.10) for some fixed values of the
parameters Nr = 0.3, Nc = 0.2, ε = 0.4, H = 0.9, Ra = 0.1 and Rd = 0.5 for model-1.

ζ
Dimensionless temperature θ(X)

ASM
(3.8)

ADSTM
[32]

LSM
[17]

NM
[32]

Error b/w
ASM & NM

0 1.000000000 1.000000000 1.000000000 1.000000000 0.000000000

0.1 0.958487073 0.956987943 0.956987665 0.956988020 0.15639783

0.2 0.921896486 0.919132442 0.919132060 0.919132513 0.29986295

0.3 0.890040325 0.886217887 0.886217828 0.886217964 0.42945931

0.4 0.862754992 0.858057590 0.858057970 0.858057690 0.5449925

0.5 0.839900364 0.834492402 0.834492969 0.834492509 0.64386863

0.6 0.821359068 0.815389550 0.815389906 0.815389668 0.72677106

0.7 0.807035887 0.800641676 0.800641589 0.800641805 0.79229215

0.8 0.796857262 0.790166063 0.790165668 0.790166187 0.83968300

0.9 0.790770921 0.783904049 0.783903760 0.783904154 0.8683636

1 0.788745608 0.781820594 0.781820569 0.781820729 0.8779610

Average Absolute Error Percentage 0.5617865

Table 2. Comparison of both analytical and numerical solutions of Eq. (2.29) for some specified
values of the parameters γ = π

2 , Nc = 0.2, ε = 0.4, Sh = 0.5, H = 0.4 and Rd = 0.7 for model-2.

X
Dimensionless temperature θ(X)

Analytical
Solution (3.17)

Numerical
Solution [36]

Error

0 0.8636040456 0.863499105 0.012151

0.2 0.8689274874 0.868776234 0.017407

0.4 0.8849634435 0.884696487 0.030166

0.6 0.9119096113 0.911530621 0.04156

0.8 0.9500981947 0.949741193 0.037575

1 1 1 0

Average Error Percentage 0.023143

The unknown parameters k and l may be calculated via Eqs. (A. 4) and (A. 5).
The following non-linear differential equations are formed by putting Eq. (A. 3) into Eq. (A. 1).

p : g(z(x, k, l, h, r, s), z′(x, k, l, h, r, s), z′′(x, k, l, h, r, s)) = 0. (A. 6)

This equation holds true at x, where x ∈ [L,U ]. By tackling Eq. (A. 6), the unknown value of the parameter h
can be discovered in terms of the existing parameters r and s.
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Symbol Meaning
A Cross sectional area
L Fin length
W Width
Ab Porous fin base area
cp Specific heat capacity of the fluid passing through porous fin
t Fin thickness
h Heat transfer coefficient
u Fluid average velocity
v Kinematic viscosity
w Width of the fin
x Axial length of the fin
keff Effective thermal conductivity
JC Conduction current intensity
J Total current intensity
m̄ The mass flow rate of the fluid
v̄w Passage velocity
Tb Temperature at the fin base
T Fin temperature
Ta Ambient temperature
γ Angle of inclination
ε Porosity or void ratio
X Dimensionless fin length
θ Dimensionless temperature
ζ Dimensionless fin length
Sh Dimensionless porosity parameter
Qb Heat transfer rate
Ra Modified Rayleigh number
Rd Radiation–conduction parameter
Nr Surface ambient parameter
Nc Convection-conduction parameter
H Hartmann parameter
NM Numerical Method
LSM Least Square Method
ADSTM Adomian Decomposition Sumudu Transform Method
PM Perturbation Method

Appendix C: Nomenclature.
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