[1] V. Alexandrov and E. Kovalenko, Problems with mixed boundry conditions in continuum mechanics,
Nauka, Moscow, 1986.
[2] A. Chakrabarti and Hamsapriye, Numerical solution of a singular integro-differential equation,
ZAMM Z. Angew. Math. Mech., 79 (1999), 233–241.
[3] J. I. Frankel, A Galerkin solution to a regularized Cauchy singular integro-differential equation,
Quart. Appl. Math., 53 (1995), 245–258.
[4] M. Hori and S. Nemat-Nasser, Asymptotic solution of a class of strongly singular integral equations,
SIAM J. Appl. Math., 50 (1990), 716–725. DOI 10.1137/0150042.
[5] A. C. Kaya and F. Erdogan, On the solution of integral equations with strongly singular kernels,
Quart. Appl. Math., 45 (1987), 105–122.
[6] N. Liu and E.-B. Lin, Legendre wavelet method for numerical solutions of partial differential
equations, Numer. Methods Partial Differential Equations, 26 (2010), 81–94. DOI 10.1002/num.
20417.
[7] B. N. Mandal and G. H. Bera, Approximate solution of a class of singular integral equations of
second kind, J. Comput. Appl. Math., 206 (2007), 189–195. DOI 10.1016/j.cam.2006.06.011.
[8] A. Mennouni, The iterated projection method for integro-differential equations with Cauchy
kernel, J. Appl. Math. Inform., 31 (2013), 661–667. DOI 10.14317/jami.2013.661.
[9] N. I. Muskhelishvili, Singular integral equations. 1953, Noordhoff, Groningen.
[10] M. Razzaghi and S. Yousefi, Legendre wavelets method for the solution of nonlinear problems
in the calculus of variations, Math. Comput. Modelling, 34 (2001), 45–54. DOI
10.1016/S0895-7177(01)00048-6.
[11] M. Razzaghi and S. Yousefi, The Legendre wavelets operational matrix of integration, Internat.
J. Systems Sci., 32 (2001), 495–502. DOI 10.1080/002077201300080910.
[12] S. Venkatesh, S. Ayyaswamy, and S. Raja Balachandar, Legendre approximation solution for a
class of higher-order volterra integro-differential equations, Ain Shams Engineering Journal, 3
(2012), 417–422.
[13] S. Venkatesh, S. Ayyaswamy, and S. Raja Balachandar, Legendre wavelets based approximation
method for solving advection problems, Ain Shams Engineering Journal, 4 (2013), 925–932.
[14] S. G. Venkatesh, S. K. Ayyaswamy, and S. Raja Balachandar, Convergence analysis of Legendre
wavelets method for solving Fredholm integral equations, Appl. Math. Sci. (Ruse), 6 (2012),
2289–2296.
[15] S. G. Venkatesh, S. K. Ayyaswamy, and S. Raja Balachandar, The Legendre wavelet method
for solving initial value problems of Bratu-type, Comput. Math. Appl., 63 (2012), 1287–1295.
DOI 10.1016/j.camwa.2011.12.069.
[16] S. G. Venkatesh, S. K. Ayyaswamy, S. Raja Balachandar, and K. Kannan, Legendre wavelets
based approximation method for Cauchy problems, Appl. Math. Sci. (Ruse), 6 (2012), 6281–6286.
[17] S. Yousefi and M. Razzaghi, Legendre wavelets method for the nonlinear Volterra-Fredholm
integral equations, Math. Comput. Simulation, 70 (2005), 1–8. DOI 10.1016/j.matcom.2005.02.
035.
[18] S. A. Yousefi, Legendre wavelets method for solving differential equations of Lane-Emden type,
Appl. Math. Comput., 181 (2006), 1417–1422. DOI 10.1016/j.amc.2006.02.031.
[19] S. A. Yousefi, Legendre scaling function for solving generalized Emden-Fowler equations, Int.
J. Inf. Syst. Sci., 3 (2007), 243–250.