The Legendre Wavelet Method for Solving Singular Integro-differential Equations

Document Type : Research Paper

Authors

Azarbaijan Shahid Madani University

Abstract

In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.

Keywords


[1] V. Alexandrov and E. Kovalenko, Problems with mixed boundry conditions in continuum mechanics,
Nauka, Moscow, 1986.
[2] A. Chakrabarti and Hamsapriye, Numerical solution of a singular integro-differential equation,
ZAMM Z. Angew. Math. Mech., 79 (1999), 233–241.
[3] J. I. Frankel, A Galerkin solution to a regularized Cauchy singular integro-differential equation,
Quart. Appl. Math., 53 (1995), 245–258.
[4] M. Hori and S. Nemat-Nasser, Asymptotic solution of a class of strongly singular integral equations,
SIAM J. Appl. Math., 50 (1990), 716–725. DOI 10.1137/0150042.
[5] A. C. Kaya and F. Erdogan, On the solution of integral equations with strongly singular kernels,
Quart. Appl. Math., 45 (1987), 105–122.
[6] N. Liu and E.-B. Lin, Legendre wavelet method for numerical solutions of partial differential
equations, Numer. Methods Partial Differential Equations, 26 (2010), 81–94. DOI 10.1002/num.
20417.
[7] B. N. Mandal and G. H. Bera, Approximate solution of a class of singular integral equations of
second kind, J. Comput. Appl. Math., 206 (2007), 189–195. DOI 10.1016/j.cam.2006.06.011.
[8] A. Mennouni, The iterated projection method for integro-differential equations with Cauchy
kernel, J. Appl. Math. Inform., 31 (2013), 661–667. DOI 10.14317/jami.2013.661.
[9] N. I. Muskhelishvili, Singular integral equations. 1953, Noordhoff, Groningen.
[10] M. Razzaghi and S. Yousefi, Legendre wavelets method for the solution of nonlinear problems
in the calculus of variations, Math. Comput. Modelling, 34 (2001), 45–54. DOI
10.1016/S0895-7177(01)00048-6.
[11] M. Razzaghi and S. Yousefi, The Legendre wavelets operational matrix of integration, Internat.
J. Systems Sci., 32 (2001), 495–502. DOI 10.1080/002077201300080910.
[12] S. Venkatesh, S. Ayyaswamy, and S. Raja Balachandar, Legendre approximation solution for a
class of higher-order volterra integro-differential equations, Ain Shams Engineering Journal, 3
(2012), 417–422.
[13] S. Venkatesh, S. Ayyaswamy, and S. Raja Balachandar, Legendre wavelets based approximation
method for solving advection problems, Ain Shams Engineering Journal, 4 (2013), 925–932.
[14] S. G. Venkatesh, S. K. Ayyaswamy, and S. Raja Balachandar, Convergence analysis of Legendre
wavelets method for solving Fredholm integral equations, Appl. Math. Sci. (Ruse), 6 (2012),
2289–2296.
[15] S. G. Venkatesh, S. K. Ayyaswamy, and S. Raja Balachandar, The Legendre wavelet method
for solving initial value problems of Bratu-type, Comput. Math. Appl., 63 (2012), 1287–1295.
DOI 10.1016/j.camwa.2011.12.069.
[16] S. G. Venkatesh, S. K. Ayyaswamy, S. Raja Balachandar, and K. Kannan, Legendre wavelets
based approximation method for Cauchy problems, Appl. Math. Sci. (Ruse), 6 (2012), 6281–6286.
[17] S. Yousefi and M. Razzaghi, Legendre wavelets method for the nonlinear Volterra-Fredholm
integral equations, Math. Comput. Simulation, 70 (2005), 1–8. DOI 10.1016/j.matcom.2005.02.
035.
[18] S. A. Yousefi, Legendre wavelets method for solving differential equations of Lane-Emden type,
Appl. Math. Comput., 181 (2006), 1417–1422. DOI 10.1016/j.amc.2006.02.031.
[19] S. A. Yousefi, Legendre scaling function for solving generalized Emden-Fowler equations, Int.
J. Inf. Syst. Sci., 3 (2007), 243–250.