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Abstract In this paper, we present Legendre wavelet method to obtain numerical solution of a
singular integro-differential equation. The singularity is assumed to be of the Cauchy
type. The numerical results obtained by the present method compare favorably with
those obtained by various Galerkin methods earlier in the literature.
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1. Introduction

The singular integro-differential equation

2
dφ

dx
+ λ

∫ 1

−1

φ(t)

t− x
dt = f(x), −1 < x < 1, λ > 0 (1.1)

with specified end conditions, φ(±1) = 0, and a special forcing function f(x) = −x
2 ,

was solved earlier by frankel [3], Chakrabarti and Hamsapriye [2], and recently by
Mandal and Bera [7].

Applications in many important fields, like fracture mechanics [5], elastic contact
problems [1], the theory of porous filtering [4] and combined infrared radiation and
molecular conduction [3], contain integral and singular integro-differential equation
with singular kernel. The solution of some of these problems may be obtained ana-
lytically by the method introduced in [9].

The forcing function f(x) = −x
2 , is importance case, because it arises in the study

of problems concerning conduction and radiation. Also singular integro-differential
equations arise in connection with solving some special type of mixed boundary value
problems involving the two dimensional Laplace’s equation in the quarter plane. Here
we applied Legendre wavelets for solving such singular integro-differential equation.
The numerical results show that the method has good accuaracy. We suppose that φ
is L2[−1, 1] function and also Holder continuous.
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2. Legendre wavelet

In recent years, wavelets have found their place in many applications such as signal
processing, image processing, and solution of many equations. The main characteristic
of wavelets is its ability to convert the given differential and integral equations to a
system of linear or nonlinear differential equations, which are then solved by existing
numerical methods.

Wavelets constitute a family of functions constructed from dilation and translation
of a single function called the mother wavelet. When the dilation parameter ’a’
and the translation parameter ’b’ vary continuously, we have the following family of
continuous wavelets as:

ψa,b(t) = |a|−1

2 ψ(
t− b

a
), a, b ∈ R, a 6= 0.

If we restrict parameters a and b to discrete values as:

a = a−k
0 , b = nb0a

−k
0 , a0 > 1, b0 > 0,

where n, k are positive integers then we have the following family of discrete wavelets:

ψk,n(t) = |a|−1

2 ψ(ak0t− nb0),

where ψk,n(t) form a basis for L2(R).
Legendre wavelets ψnm(t) = ψ(k, n̂,m, t) have four arguments:

n̂ = 2n− 1, n = 1, 2, 3, . . . , 2k−1, k ∈ Z
+,

where m is the order of Legendre polynomials and t is the normalized time. They are
defined on the interval [0,1) as

ψnm(t) =

{ √

m+ 1
2 2

k

2 pm (2kt− n̂) n̂−1
2k ≤ t < n̂+1

2k ,

0 otherwise,
(2.1)

where m = 0, 1, 2, . . . ,M − 1, n = 1, 2, 3, . . . , 2k−1. The coefficient
√

m+ 1
2 is for

orthonormality, the dilation parameter is a = 2−k and translation parameter is b =
n̂2−k.

Here pm(t) are well-known Legendre polynomials of order m with the aid of the
following recurrence formulas:

p0(t) = 1,

p1(t) = t,

pm+1(t) = t

(

2m+ 1

m+ 1

)

pm(t)−
(

m

m+ 1

)

pm−1(t) m = 1, 2, 3, . . . .
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3. Function approximation

A function f(t) defined over [0,1) may be expanded using Legendre wavelet as

f(t) =
∞
∑

n=1

∞
∑

m=0

cnmψnm(t), (3.1)

where cnm = 〈f(t), ψnm(t)〉, and 〈., .〉 denotes the inner product. If the infinite series
(3.1) is truncated, then it can be written as

f(t) ∼=
2k−1

∑

n=1

M−1
∑

m=0

cnmψnm(t) = CTΨ(t), (3.2)

where C and Ψ(t) are 2k−1M × 1 matrices given by

C = [c10, c11, . . . , c1M−1, c20, . . . , c2M−1, . . . , c2k−10
, . . . , c

2k−1M−1
]T , (3.3)

Ψ = [ψ10, ψ11, . . . , ψ1M−1, ψ20, . . . , ψ2M−1, . . . , ψ2k−10, . . . , ψ2k−1M−1]
T
. (3.4)

Also a two variables function h(t, s) ∈ L2([0, 1)× [0, 1)) can be written as:

h(t, s) ≃ ΨT (t)HΨ(s),

where H is 2k−1M × 2k−1M matrix with

Hij = (ψi(t), (h(t, s), ψj(s))).

3.1. The operational matrices of derivative. The differentiation of vectors Ψ in
(3.4) can be expressed as

Ψ′(x) = DΨ(x), (3.5)

where D is operational matrix of derivative for Legendre wavelets. If we assume that
k = 1, vectors Ψ and differential of vectors Ψ can be written as follows

Ψ(t) = [ψ10(t), ψ11(t), . . . , ψ1M−1(t)], (3.6)

Ψ′(t) = [ψ′

10(t), ψ
′

11(t), . . . , ψ
′

1M−1(t)]. (3.7)

The matrix D can be obtained by the following process:

d(i, j) =

∫ 1

0

ψ′

1i(t)ψ1j(t)dt, j = 1, . . . , i− 1 (3.8)

d(i, j) = 0, j ≥ i. (3.9)

4. Applying the method

The Legendre wavelet method terminology is used in [11] in 2001 by Razzaghi et al.
Also, many authors, e.g. [10,17–19] have handled Legendre wavelets for the solution of
varieties of differential and integral equations. Venkatesh et al. in [6, 12–16] applied
Legendre wavelets for the solution of initial value problems of Bratu-type, Higher
order Volterra integro-differential equations, Cauchy problems of first order partial
differential, advection problems and they gave the theoretical analysis of Legendre
wavelets method for the solution of second kind Fredholm integral equations. Also,
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in [6] Legendre wavelet method used for numerical solutions of partial differential
equation.

In the present article, we are concerned with the application of Legendre wavelets
to find the approximate solution of Eq. (1.1). The Legendre wavelet method (LWM)
consists of reducing the given integral equations to a system of simultaneous nonlinear
equations. The properties of Legendre wavelets are utilized to evaluate the unknown
coefficients and find an approximate solution to the equation.

The unknown function φ(x) of (1.1) with φ(±1) = 0, can be represented in the
form

φ(x) =
√

1− x2g(x), −1 ≤ x ≤ 1,

where g(x) is a well behaved function of x in the interval −1 ≤ x ≤ 1. To find an
approximate solution of (1.1), g(x) is approximated using Legendre wavelets in the
interval [−1, 1] as

g(x) =

2k−1M−1
∑

j=0

cjψj(x), (4.1)

with considering k = 1 we can write

g(x) = CTΨ(x), (4.2)

where

CT = [c0, c1, . . . , cM−1], (4.3)

ΨT = [ψ0, ψ1, . . . , ψM−1], (4.4)

and with the above notification we have following expression for the f(x) as

f(x) = FTΨ(x), (4.5)

where

FT = [f0, f1, . . . , fM−1]. (4.6)

Substituting (4.1) in (1.1), we get

2
d

dx

(

(1− x2)
1

2 g(x)
)

+

∫ 1

−1

(1− t2)
1

2 g(t)

t− x
dt = f(x). (4.7)

Define vector V as follows

V =

[
∫ 1

−1

√

1− t2
ψ0(t)

t− x
dt, . . . ,

∫ 1

−1

√

1− t2
ψM−1(t)

t− x
dt

]T

. (4.8)

Now Eq. (4.7) can be written in matrix form

2
√

1− x2CTDΨ(x)− CT x√
1− x2

Ψ(x) + λCTV = FTΨ(x), (4.9)

where D is the operational matrix of derivative. We collocate Eq.(4.9) in M colloca-
tion points, thus we have M equations and M unknown coefficients cj :

2
√

1− x2iC
TDψ(xi)− CT xi

1− x2i
ψ(xi) + λCTV (xi) +

xi

2
= 0, (4.10)
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for i = 0, . . . ,M − 1. We solve this M nonlinear equations by the Newton iterative
method. Then the unknown coefficients cj can be found, so the problem is solved
numerically.

5. Numerical results

In order to illustrate the performance of our method in solving integro-differential
equations, we consider the following examples. The solution of the examples are
obtained for different values of N .

Example 1. Here we solve Eq. (4.9) for λ = 1 and f(x) = −x
2 . Using these coefficients

the value of f(x) at x = (0.2)k, k = 0, 1, · · · , 5, are presented in Table 1. For a
comparison between the present method and that of the method used in [3], values
of φ(x) at these points obtained by Frankel [3] are also given. It is obvious that
the result compares favorably with the results of Frankel and also those obtained by
Chakrabarti and Hamsapriye [2] and Mandal and Bera [7]. It was further observed
that by increasing M the accuracy of the result increases.

Table 1. Numerical results for example 1

0 0.2 0.4 0.6 0.8 1
n=6 0.06982 0.0669 0.06007 0.04718 0.02876 0
n=8 0.06976 0.06745 0.06002 0.04718 0.02795 0
n=10 0.06966 0.06703 0.06053 0.04717 0.02850 0
frankel 0.06950 0.06712 0.05984 0.04718 0.02891 0

Example 2. Consider the following integro-differnential equation [8]:

φ
′

(s) +
1

π5

∫ 1

−1

φ(t)

t− s
dt =

2(1 + π5)s

π5
+

(s2 − 1)

π5
ln

(

1− s

1 + s

)

, (5.1)

with the exact solution φ(s) = s2 − 1. Table 2 gives the numerical results for this
example.

Table 2. Numerical results for example 2

0 0.2 0.4 0.6 0.8 1
n=6 -1 -0.9400 -0.8423 -0.6411 -0.3719 0
n=8 -0.9938 -0.9590 -0.8365 -0.6396 -0.3589 0
n=10 -1.018 -0.9613 -0.8407 -0.6407 -0.3607 0

exact valuee -1 -0.96 -0.84 -0.64 -0.36 0

Example 3. Consider the following integro-differential equation:

dφ

ds
+

∫ 1

−1

φ(t)

t− s
dt = (s2 + 2s− 1)es + e1−s − e−1−s (5.2)
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Table 3. Numerical results for example 3

0 0.2 0.4 0.6 0.8 1
n=6 -1.321 -1.163 -1.067 -0.9082 -0.6369 0
n=8 -1.4 -1.224 -1.128 -0.9777 -0.7566 0
n=10 -1.17 -1.1875 -1.213 -1.096 0.8192 0

exact valuee -1 -1.1725 -1.2531 -1.1662 -0.8012 0

with the exact solution φ(s) = (s2 − 1)es. Table 3 gives the numerical results of the
method.

These examples show the efficiency and accuracy of the method. Table 2 and Table
3 show the exact value of f(x) at s = (0.2)k, k = 0, 1, · · · , 5, and the values of φ at
these points obtained by presented method.
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