A numerical method for KdV equation using rational radial basis functions

Document Type : Research Paper

Authors

1 Department of Mathematics, Payame Noor University (PNU), Tehran, Iran.

2 Department of Applied Mathematics, University of Kurdistan, Sanandaj, Iran.

3 Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran.

Abstract

In this paper, we use the rational radial basis functions ( RRBFs) method to solve the Korteweg-de Vries (KdV) equation, particularly when the equation has a solution with steep front or sharp gradients. We approximate the spatial derivatives by RRBFs method then we apply an explicit fourth-order Runge-Kutta method to advance the resulting semi-discrete system in time. Numerical examples show that the presented scheme preserves the conservation laws and the results obtained from this method are in good agreement with analytical solutions. 

Keywords


  • [1] E. N. Aksan and A. O¨ zdes, Numerical solution of Korteweg–de Vries equation by Galerkin B-spline finite element method, Appl. Math. Comput., 175 (2006), 1256-1265.
  • [2] A. Bashan, An effective application of differential quadrature method based on modified cubic B-splines to numer- ical solutions of the KdV equation, Turk. J. Math., 42 (2018), 373-394.
  • [3] A. Bashan and A. Esen, Single soliton and double soliton solutions of the quadratic-nonlinear Korteweg-de Vries equation for small and long-times, Numer. Methods Partial Differential Equations, (2020), 1-22.
  • [4] R. C. Cascaval, Variable coefficient KdV equations and waves in elastic tubes, Lect. Notes Pure Appl. Math., 234 (2003), 57-70.
  • [5] D. G. Crighton, Applications of KdV, Acta Appl. Math., 39 (1995), 39-67.
  • [6] I. Da˘g and Y. Dereli, Numerical solutions of KdV equation using radial basis functions, Appl. Math. Model., 32 (2008), 535-546.
  • [7] M. Dehghan and A. Shokri, A numerical method for KdV equation using collocation and radial basis functions, Nonlinear Dyn., 50 (2007), 111-120.
  • [8] S. De Marchi, A. Martinez, and E. Perracchione, Fast and stable rational RBF-based partition of unity interpola- tion, J. Comput. Appl. Math., 349 (2019), 331-343.
  • [9] A. Dur´an and M. A. Lopez-Marcos, Conservative numerical methods for solitary wave interactions, J. Phys. A., 36 (2003), 7761-7770.
  • [10] G. E. Fasshauer, Meshfree Approximation Methods with Matlab, World Scientific, 2007.
  • [11] B. Fornberg and G. B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. Roy. Soc., 289 (1978), 373-404.
  • [12] C. S. Gardner and G. K. Morikawa, Similarity in the Asymptotic Behavior of Collision-free Hydromagnetic Waves and Water Waves, New York Univ., Inst. of Mathematical Sciences, Technical Report, 1960.
  • [13] K. Goda, On instability of some finite difference schemes for Korteweg-de Vries equation, J. Phys. Soc. Japan, 39 (1975), 229-236.
  • [14] S. Y. Hao, S. S. Xie, and S. C. Yi, The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials, Appl. Math. Comput., 218 (2012), 8659-8671.
  • [15] M. Heidari, M. Mohammadi, and S. De Marchi, A shape preserving quasi-interpolation operator based on a new transcendental RBF, Dolomites Research Notes on Approximation, 14(1) (2021), 56-73.
  • [16] S. Jakobsson, B. Andersson, and F. Edelvik, Rational radial basis function interpolation with applications to antenna design, J. Comput. Appl. Math., 233 (2009), 889-904.
  • [17] A. Jeffrey and T. Kakutani, Weak nonlinear dispersive waves: a discussion centered around the Korteweg–de Vries equation, SIAM Rev., 14(4) (1972), 582-643.
  • [18] S. B. G. Karakoc and K. K. Ali, New exact solutions and numerical approximations of the generalized KdV equation, Comput. Methods Differ. Equ., 9(3) (2021), 670-691.
  • [19] D. Kong, Y. Xu, and Z. Zheng, A hybrid numerical method for the KdV equation by finite difference and sinc collocation method, Appl. Math. Comput., 355 (2019) 61-72.
  • [20] D. J. Korteweg and G. De Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. 39(240) (1895), 422-443.
  • [21] M. Lakestani, Numerical solutions of the KdV equation using B-spline functions, Iran. J. Sci. Technol. Trans. A Sci., 41 (2017), 409-417.
  • [22] M. Mohammadi, R. Mokhtari, and R. Schaback, A meshless method for solving the 2d brusselator reaction- diffusion system, Comput. Model., Eng. Sci., 101(2014), 113–138.
  • [23] R. Najafi, Approximate nonclassical symmetries for the time-fractional KdV equations with the small parameter, Comput. Methods Differ. Equ., 8(1) (2020), 111-118.
  • [24] S. L. Naqvi, J. Levesley, and S. Ali, Adaptive radial basis function for time dependent partial differential equations, J. Prime Res. Math., 13 (2017), 90-106.
  • [25] S. Niknam and H. Adibi, A numerical solution of two-dimensional hyperbolic telegraph equation based on moving least square meshless method and radial basis functions, Comput. Methods Differ. Equ., 10(4) (2022), 969-985.
  • [26] O¨ . Oru¸c, F. Bulut, and A. Esen, Numerical solution of the KdV equation by Haar wavelet method, Pramana-J. Phys., 87(94) (2016), 1-11.
  • [27] B. Saka, Cosine expansion-based differential quadrature method for numerical solution of the KdV equation, Chaos Solitons Fractals, 40 (2009), 2181-2190.
  • [28] S. A. Sarra and Y. Bai, A rational radial basis function method for accuratly resolving discontinuities and steep gradients, Appl. Numer. Math., 130 (2018), 131-142.
  • [29] R. Schaback, Kernel-Based Meshless Methods, Gottingen, 2011.
  • [30] M. Shiralizadeh, A. Alipanah, and M. Mohammadi, Numerical solution of one-dimensional Sine-Gordon equation using rational radial basis functions, J. Math. Model., 10 (2022), 1-16.
  • [31] L. Van Wijngaarden, On the equations of motion for mixtures of liquid and gas bubbles, J. Fluid Mech., 33(3) (1968), 465-474.
  • [32] A. C. Vliengenthart, On finite difference methods for the Korteweg–de Vries equation, J. Eng. Math., 5 (1971), 137-155.
  • [33] H. Washimi and T. Taniuti, Propagation of ion-acoustic solitary waves of small amplitude, Phys. Rev. Lett., 17 (1966), 996-998.
  • [34] H. Wendland, Scattered data approximation, Cambridge University Press, 2004.
  • [35] N. J. Zabusky, A Synergetic Approach to Problem of Nonlinear Dispersive Wave Propagation and Interaction, in: W. Ames (Ed.), Proc. Symp. Nonlinear Partial Diff. Equations, Academic Press, (1967), 223-258.