[1] G. A. Anastassiou, Fuzzy Mathematics, Approximation Theory, Springer, CityplaceHeidelberg, 2010.
[2] M. Barkhordari and M. Khezerloo, Fuzzy bivariate Chebyshev method for solving fuzzy Volterra– Fredholm integral equations, Int. J. Ind. Math, 3(2) (2011), 67–77.
[3] R. Goetschel and W. Vaxman, Elementary calculus, Fuzzy Sets Syst, 18 (1986), 31–43.
[4] O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst, 24 (1987), 301– 317.
[5] O. Kouba, Lecture notes: Bernoulli polynomials and applications, 2013.
[6] K. Maleknejad and H. Derili, Numerical solution of Hammerstein integral equations by using combination of spline collocation method and Lagrange interpolation, Appl. Math. Comput, 190 (2007), 1557–1562.
[7] F. Mirzaee, M. Paripour, and M. Komak, Application of Triangular and Delta Basis Functions to Solve Linear Fredholm Fuzzy Integral Equation of the Second Kind, Arab J Sci Eng, 39 (2014), 3969–3978.
[8] A. Molabahrami, A. Shidfar, and A. Ghyasi, An analytical method for solving linear Fredholm fuzzy integral equations of the second kind, Comput. Math. Appl, 61 (2011), 2754–2761.
[9] M. Mosleh and M. Otadi, Solving a System of Fuzzy Integral Equations by an Analytic Method, Comput. Math. Appl, 3 (2015), 67-71.
[10] H. T. Nguyen, A note on the extension principle for fuzzy sets, J.Math. Anal. Appl, 64 (1978), 369–380.
[11] L. Pretorius and D. Eyre, Spline-Gauss rules and the Nystrm method for solving integral equations in quantum scattering, J. Comput. Appl. Math, 18 (1987), 235–247.
[12] M. A. Ramadan and M. R. Ali, Numerical Solution of Volterra-Fredholm Integral Equations Using Hybrid Orthonormal Bernstein and Block-Pulse Functions, Asian Res. Journal. Math, 4 (2017), 1-14.
[13] M. A. Ramadan and M. R. Ali, Solution of integral and Integro- Differential equations system using Hybrid orthonormal Bernstein and block-pulse functions, Journal. abst. Comput. Math, 2 (2017),35-48.
[14] M. A. Ramadan and M. R. Ali, An efficient hybrid method for solving Fredholm integral equations using triangular functions, New Trends. Math Sciences, 5 (2017), 213-224.
[15] M. A. Ramadan, T. S. El-Danaf, and A. M. E. Bayoumi, A finite iterative algorithm for the solution of Sylvester conjugate matrix equation AV + BW = EVF +Cand AV + BW = EVF+ C, Journal . Math. Comput. Modelling, 58 ( 2013), 1738–1754.
[16] C. Wu and M. Ma, On the integrals, series and integral equations of fuzzy set-valued functions, J. Harbin Inst. Technol, 21 (1990), 11–19.