Numerical investigation of the generalized Burgers-Huxley equation using combination of multiquadric quasi-interpolation and method of lines

Document Type : Research Paper


1 Department of mathematics, Professor Hesabi Branch, Islamic Azad University, Tafresh, Iran.

2 Department of Mathematics, Amirkabir University of Technology, Tehran, Iran.


In this article, an efficient method for approximating the solution of the generalized Burgers-Huxley (gB-H) equation using a multiquadric quasi-interpolation approach is considered. This method consists of two phases. First, the spatial derivatives are evaluated by MQ quasi-interpolation, So the gB-H equation is reduced to a nonlinear system of ordinary differential equations. In phase two, the obtained system is solved by using ODE solvers. Numerical examples demonstrate the validity and applicability of the method.


  • [1]         N. Alinia and M. Zarebnia, A numerical algorithm based on a new kind of tension B-spline function for solving Burgers-Huxley equation, Numer. Algorithms., 82 (2019), 1121–1142.
  • [2]         E. Ashpazzadeh, B. Han, and M. Lakestani, Biorthogonal multiwavelets on the interval for numerical solutions of Burgers’ equation, J. Comput. Appl. Math., 317 (2017), 510–534.
  • [3]         B. Batiha, M. S. M. Noorani, and I. Hashim, Application of variational iteration method to the generalized Burgers–Huxley equation, Chaos. Solitons. Fractals., 36 (2008), 660–663.
  • [4]         R. K. Beatson and M. J. D. Powell, Univariate multiquadric approximation: quasi interpolation to scattered data, Constr. Approx., 8 (1992), 275–288.
  • [5]         A. G. Bratsos, A fourth order improved numerical scheme for the generalized Burgers–Huxley equation, Am. J. Comput. Math., 1 (2011), 152–158.
  • [6]         M. D. Buhmann, Radial Basis Functions: Theory and implementations, Cambridge University Press, 2003.
  • [7]         R. Chen, X. Han, and Z. Wu, A multiquadric quasi-interpolation with linear reproducing and preserving mono- tonicity, J. Comput. Appl. Math., 231 (2009), 517–525.
  • [8]         R. Chen and Z. Wu, Applying multiquadric quasi-interpolation to solve Burgers’ equation, Appl. Math. Comput., 172 (2006), 472–484.
  • [9]         M. Dehghan, B. Nemati Saray, and M. Lakestani, Mixed finite difference and Galerkin methods for solving Burgers equations using interpolating scaling functions, Math. Methods. Appl. Sci., 37 (2014), 894–912.
  • [10]       F. Gao and C. Chi, em Numerical solution of nonlinear Burgers’ equation using high accuracy multi-quadric quasi-interpolation, Appl. Math. Comput., 229 (2014), 414–421.
  • [11]       R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., 176 (1971), 1905–1915.
  • [12]       R. L. Hardy, Theory and applications of the multiquadric-biharmonic method, 20 years of discovery 1968-1988, Comput. Math. Appl., 19 (1990), 163–208.
  • [13]       I. Hashim, M. S. M. Noorani, and M. R. S. Al-Hadidi, Solving the generalized Burgers-Huxley equation using the Adomian decomposition method, Math. Comput. Model., 43 (2006), 1404–1411.
  • [14]       H. N. A. Ismail, K. Raslan, and A. A. A. Rabboh, Adomian Decomposition Method for Burger’s Huxley and Burger’s-Fisher Equations, Appl. Math. Comput., 159 (2004), 291–301.
  • [15]       M. Izadi, Applications of the Newton-Raphson method in a SDFEM for inviscid Burgers equation, Computational Methods for Differential Equations, 8 (2020), 708–732.
  • [16]       Z. Jiang and R. Wang, Numerical solution of one-dimensional Sine–Gordon equation using high accuracy multi- quadric quasi-interpolation, Appl. Math. Comput., 218 (2012), 7711–7716.
  • [17]       Z. Jiang, R. Wang, C. Zhu and X. Min, High accuracy multiquadricquasi-interpolation, Appl. Math. Model., 35 (2011), 2185–2195.
  • [18]       M. El-Kady, S. M. El-Sayed, and H. E. Fathy, Development of Galerkin method for solving the generalized Burger’s- Huxley equation, Math. Probl. Eng., (2013), 1–9.
  • [19]       L. Ling, A univariate quasi-multiquadric interpolation with better smoothness, Comput. Math. Appl., 48 (2004), 897–912.
  • [20]       L. Ling, Multivariate quasi-interpolation schemes for dimension-splitting multiquadric, Appl. Math. Comput., 161 (2005), 195–209.
  • [21]       L. Ma and Z. Wu, Approximation to the k-th derivatives by multiquadric quasi-interpolation, J. Comput. Appl. Math., 231 (2009), 925–932.
  • [22]       L. Ma, Z. Wu, Stability of multiquadric quasi-interpolation to approximate high order derivatives, Sci. China Math., 53 (2009), 985–992.
  • [23]       M. J. D. Powell, Univariate multiquadric approximation: reproduction of linear polynomials, in: W. Haussman, K. Jetter (Eds.), Multivariate Approximation and Interpolation, Birkhauser Verlag, 1990, 227–240
  • [24]       R. Schaback and Z. Wu, Construction techniques for highly accurate quasi-interpolation operators, J. Approx. theory., 91 (1997), 320–331.
  • [25]       S. Shukla and M. Kumar, Error analysis and numerical solution of Burgers-Huxley equation using 3-scale Haar wavelets, Eng. Comput., 36 (2020).
  • [26]       B. K. Singh, G. Arora, and M. K. Singh, A numerical scheme for the generalized Burgers–Huxley equation, J. Egyptian Math. Soc., 24 (2016), 629–637.
  • [27]       L. Y. Sun and C. G. Zhu, Cubic B-spline quasi-interpolation and an application to numerical solution of generalized Burgers-Huxley equation, Adv. Mech. Eng., 12 (2020), 1–8.
  • [28]       R. Wang, X. Min, and Q. Fang, A kind of improved univariate multiquadric quasi-interpolation operators, Comput. Math. Appl., 59 (2010), 451–456.
  • [29]       X. Y. Wang, Z. S. Zhu, and Y. K. Lu, Solitary wave solutions of the generalized Burgers-Huxley equation, J. Phys. A: Math. Gen., 23 (1990), 271–274.
  • [30]       H. Wu and Y. Duan, Multi-quadric quasi-interpolation method coupled with FDM for the Degasperis–Procesi equations, Appl. Math. Comput., 274 (2016), 83–92.
  • [31]       R. Wu, T. Wu, and H. Li, A family of multivariate multiquadric quasi-interpolation operators with higher degree polynomial reproduction, J. Comput. Appl. Math., 274 (2015), 88–108.
  • [32]       Z. Wu and J. P. Liu, Generalized Strang-Fix condition for scattered data quasi-iterpolation, Adv. Comput. Math., 23 (2005), 201–214.
  • [33]       Z. Wu and R. Schaback, Shape preserving properties and convergence of univariate multiquadric quasi- interpolation, Acta. Math. Appl. Sin. Engl. Ser., 10 (1994), 441–446.
  • [34]       Y. Zhang, X. Liang, and Q. Li, A further research on the convergence of Wu-Schaback’s multi-quadric quasi- interpolation, J. Appl and Computat. Math., 2 (2013), 1–3.