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Abstract

In this article, an efficient method for approximating the solution of the generalized Burgers-Huxley (gB-H)
equation using a multiquadric quasi-interpolation approach is considered. This method consists of two phases.
First, the spatial derivatives are evaluated by MQ quasi-interpolation, So the gB-H equation is reduced to a
nonlinear system of ordinary differential equations. In phase two, the obtained system is solved by using ODE
solvers. Numerical examples demonstrate the validity and applicability of the method.
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1. INTRODUCTION

The multiquadric radial basis function was first introduced by Hardy in 1968 [11]. He showed that multiquadric
can be applied in various branches of science such as hydrology, geology, mining, and digital modeling [12].

The first multiquadric quasi-interpolation was introduced by Powell [23] in 1990 and he showed that this MQ
quasi-interpolation has linear reproducing properties. Later, Beatson and Powell [4] introduced three multiquadric
quasi-interpolation operators L4, Lp, and Lo. Coefficients in the operators L4 and Lp only depend on the function
values while in Lo operator values of derivatives at the beginning and the end is needed too, so L¢ is not convenient
for practical cases. In [33] Wu and Schaback presented a multiquadric quasi-interpolation operator Lp which is
monotonicity preserving and has a convergence of order O(h2logh) if ¢ = O(h). Later, Ling [19] presented a univariate
multiquadric quasi-interpolation based on the Wu and Schaback method which was applicable in practice because did
not need the values of function derivatives and converged with O(h%*®logh) when ¢ = O(h). Chen et. al [7] introduced
a multiquadric quasi-interpolation with preserving monotonicity and linear reproducing properties. They proved that
their MQ quasi-interpolation has the accuracy of O(h?) if ¢ = O(h?). In [34] the error estimate for the accuracy of
Wu-Schaback MQ quasi-interpolation for special classes of functions that have low smoothness was studied. Authors
of [17] presented two MQ quasi-interpolation operators with better accuracy than the Wu-Schaback operator . In
these schemes, they used the IMQ radial basis function and unlike the RBF method, the ill-conditioning was avoided.
Authors in [28] by using Hermite interpolation introduced a MQ quasi-interpolation operator in one-dimensional case.
Wu et al. [31] applied multidimensional divided differences to modify Ling [20] approach to provide a family of
multivariate MQ quasi-interpolation operators. MQ quasi-interpolation methods are convenient tools for the solution
of various engineering issues and have been the focus of researchers for many years [8, 10, 16, 30].

Consider the nonlinear generalized Burgers-Huxley (gB-H) equation

wy + oty — gy = Bu(l — u®)(u® — ) (1.1)
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x € la,b], t>0
with the following initial and boundary conditions
u(z,0) = f(z)
u(a,t) = go(t), u(db,t) = gp(t).
In [29], exact solution of the gB-H equation by using nonlinear transformations is presented as

ov2at  ory(1 +6—7)(p—a)t)}% (1.2)

u(z,t) = {% + Ytanh (oyx —

2 1+6 2(1+0)
where a, ﬁ,§207we(0,1)702%andp: a2 +4B(1 4+ 9).

The gB-H equation, when the parameters are small, has critical roles in nonlinear physics. Note that when o = 0 the
gB-H equation reduces to Fitzhugh-Nagumo equation and for § = 0, § = 1 this equation becomes Burgers equation.

For the solution of Burgers and gB-H equations, various numerical methods were proposed. In [9], FDM and Galerkin
method are used to find the solution of Burgers equation. Authors of [15] applied the Newton-Raphson method in
connection with FEM for the inviscid Burgers equation. In [2], mixed FDM and Hermite cubic spline multiwavelets
are investigated to find the solution of the Burgers equation. Authors of [1] implemented the hyperbolic-trigonometric
tension B-spline method to solve the B-H equation and studied the convergence analysis of the method. Bratsos [5]
used an implicit fourth-order finite-difference scheme in a two-time level recurrence relation for the numerical solution
of the ¢gB-H equation. Authors of [13, 14] used the Adomian decomposition method to solve the gB-H equation. In [27]
time and spatial derivatives are approximated by the Euler scheme and cubic B-spline quasi-interpolation respectively
to solve the gB-H equation. In [25], Crank-Nicolson FDM and 3-scale Haar wavelets was used to obtain the solution
of the gB-H equation. Authors of [18] implemented Chebyshev and Legendre cardinal functions to solve the gB-H
equation by the nodal Galerkin method. In [26], modified cubic B-spline differential quadrature method is investigated
for the numerical solution of gB-H equation.

In this paper, an efficient method that used multiquadric quasi-interpolation and Method of Lines (MOL) is pre-
sented to solve the gB-H equation numerically. For this aim, we applied the multiquadric quasi-interpolation method
to approximate the spatial derivatives in the gB-H equation. So, the gB-H equation is reduced to a system of nonlinear
ordinary differential equations. By solving this system using ODE solvers such as the Runge-Kutta method we have
the approximate solution of the gB-H equation.

The outline of this article is as follows: In section 2, we introduce the multiquadric quasi-interpolation proposed by
Chen et al. [7] and examine the accuracy of its derivatives. In section 3, the combination of MQ quasi-interpolation
and method of lines are applied for the solution of the gB-H equation. In section 4, numerical results are presented
for some examples and we compare these results with exact solutions. Also, we have given a comparison between the
presented method and some numerical techniques which were previously proposed. At the end of section 5, we have
given the conclusion.

2. MULTIQUADRIC QUASI-INTERPOLATION

Suppose a real function f(x) is defined on the interval [a,b]. The univariate multiquadric quasi-interpolation
operator Lf(z) on scattered data points {x;}]_, where a = 29 < x1 <+ <z, = b, has the form

Lf(z) = f(x;)a;(x) (2.1)
§=0

where «;(x) are linear combinations of the MQ radial basis functions. Given a data points {;, f(z;)}12,, Wu and
Schaback [33] presented a multiquadric quasi-interpolation as

Lof(a) =3 fa;)a(a) (2.2

(&)
ENE
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where
$1(z) — (z — 20)
ap(x) = 3 + 21 —20) 0 )
o (2) = p2(z) — d1(z)  d1(z) — (z — 20)

! 2(xg — 1) 2(xy — o)

() = G (@) —¢i(x)  ¢i(x) —pjax) ., m—
aj(z) = 2eyor — ;) 201, —a, 1) j=2, , 2,
(&) = (Tm =) = Pm-1()  Pm-1(x) — dm2(x)

m 2(Tm — 1) 2(Tm—1 = Tm-2)

Pm-1(z) — (Tm — )
om () = 2" 2T — Tpe1)

oj(x) =/(x —z;)?+c2, j=1,--- ,m—1.

Chen et al. [7] introduced the MQ quasi-interpolation as

Zf zj)oj(z (2.3)
7=0
where
oy () = $j1(@) — ¢i(z)  ¢;(z) — ¢j—1(=’5)’ =0 m,

2(zjp1 — ;) 2(x; —xj-1)
¢ 1(x) = go(z) + 20 — 21,
dm(z) = ¢o(x) — 22 + T4y, + o,
¢m+1(x) ( )+xm+1 Tm,
and

¢J(x): (x—xj)2+c2,j:(),---,m—1.

By using simple manipulation this MQ quasi-interpolation can be rewritten as

]- Z ¢J+1 j( ) o ¢J(m) — qu*l(x) )f(.’bj)

DO |

x]-&-l — Ty Lj—Tj-1

(2.4)
+ %(1 4 P =00l ) 4 S0 - Lol =ty
The above MQ quasi-interpolation has two other forms as
= @) = flay)  Jlag) = Saim)y o J@0) + @)

1 m
Lf(x) =~

f(x1) = f(@o) f(@m) = f(@m-1)

e a0 O T Sy @)
and
m—1
Lf(x) = f(l‘o) ';f(-%‘m) + % Z d)J <§?+_ di3+1(3;‘) (f($j+1) f(xj)) (2 6)
j=0 U S|
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In addition, on x € [xg, x.,], the derivatives of Lf(x) can be calculated by

o (@) — o) (2)

Tj+1 — Tj

(LF)® = (F(zan) — Flay)). (27)

=0
In the following theorems, we mention some attributes of Lf(x):

Theorem 2.1. The MQ quasi-interpolation Lf(x) has preserving monotonicity and linear reproducing properties on

[®o, Tm] (see [7]).
Theorem 2.2. Let f € C*(zo,xm) and h = maz{z; —x;j_1}, 1 < j <m, then for any real number ¢ > 0, we have
ILf(x) — f(2)]loo < koCh + k1h* + kach + kzc?logh (2.8)

where Cy, = min{c, %}, k1, ko and k3 are constants independent of h and ¢ (see [7]).

Providing estimation for accuracy of M(Q quasi-interpolation derivations has been in focus of attention in recent
years [4, 6, 21, 22, 33]. In the following, we investigate about the accuracy of (Lf)*)(z) for approximating f*)(z).
At first, this issue is studied for k& = 1.

Theorem 2.3. Let [ be differentiable and f'(x) is Lipschitz continuous, then
2

LS (@) = f (@)l < 0(%) +O(Vh?+¢%) + O(h). (2.9)

Proof. Suppose z_1 < g, xg — -1 < h, Ty < Type1 and Tpaq — Ty < b M we set f(x_1) = f(xo) and f(zpy1) =
f(z) then (Lf)®*) can be presented by

(L)®) () = ;Z(f(x;t) :f('fﬂj) B f(xj)' :f('$j71))¢§_k)(x). (2.10)
=0 j+1 — Ty Tj—Tj-1

For any x € [a, b], if we define p(y) = f(z) + f'(z).(y — x), then p(z) = f(z). So

1 m m
I(Lf) (z) = f'(2)] = 5‘ Z(f[xjuijrl] — flwjo1,75]) Z plrj, zj11] p[xjfhxj])%(x”
j=0 7=0
o (2.11)
=5 S (flwj—1, 25, mj0a] = plajor, 2, 2] (@40 — 25218 ().
j=0
Because p(y) is a linear function then plx;_1,z;,2;41] = 0. Therefore, we have
1 m
I(Lf) (z) = f'(x)] = 5 > flrjors g, wial (@ — 20)¢ ()]
j=0
1 m
=3 Z(f[%’a%#l] = flzj—1 — ;])¢5(2)] (2.12)

I
o

<

[F(&5) = f(n)] |¢5(2)]

-

o

Jj=

where, z; < &; < z;41 and z;_1 < n; < ;. Now, since f’(x) is Lipschitz continuous then there is a constant M such
that

I(Lf) (x) — Z ) 21—zl (2.13)
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Hence,
!/ ! M - / — /
((Lf) (z) = fi@)] = 5 ( Yo @ e —aial+ Y0 185(@)] |z —2oa)
=0 =0
|x—J;cj|§h \;C—ijbh
M.h & |z — ¢| (2.14)
Si ‘.’t 1—$,1|+M d+0(h)
e Sl e
h2
< O(?) +O(Vh? + %) + O(h).
O
To state the error bound for |(Lf)*(x) — f*(z)|, (k > 2) we need some preliminaries:
Lemma 2.4. If p(z) = Va? + ¢2, then the k-th-order (k > 2) derivatives of p(x) can be bounded as
2
Ck.C
o8 ()] < FEEs (2.15)
and
k Ck
(o)) < 2, (216)
(2.17)
(2.18)

where ¢, s a constant, which depends on k.
Theorem 2.5. Let ¢(w) is the Fourier transform of ¢(x) and

[ih(w) = 1] < O(w*), w — 0.
If function f(x) has inverse Fourier transform as f(x) = fei“’””f(w)dw, [ e™rwkda exists, then

(L), so Tpe(x) = #. The fourier transform of 1 (x) satisfies the condition
(2.19)

where e (x) = 29p(L) (see [32]).
linear combination of shifts of the function ¢ if ¢» € C* and (0) # 0, one can satisfy the condition (2.17).

1

¢

(e * f)(x) = f(@)]|oo < O(Y),
In [24], authors showed that condition (2.17) can be satisfied by modifying a given . In particular, by a finite

Set ¥(x) = 4(1_:12)% then t.(x)
[h(w) — 1] < O(w?), w — 0.

So, by using theorem 2.5, we can get
(2.20)

Ff@).o"(x—t
[ HOEED 6 ) < 06,
At this point, we use the approach which is used in [21] to prove the following result:

Theorem 2.6. Let k > 2 and assume f € C*+2)([a,b]) then
h 2
——) +0(c%)
1 3 g
(@1 — 23)” 7 (&1,),

1

Proof. By using Taylor series formula
2!

(Lf) P () — 8 (z)] < O(Z) +0(
f(@j1) = f(x)) + (@01 —25) f (x5) +
1

(541 — 25)° " () + 3
L@ — )6,

(21 — )2 f" (z) + 3

flrj1) = flag) + (251 — 25) f'(25) + 55

(=)=
E)NE
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where z; < Elj <zj41 and zj_; < 52]. < z;, we have

e 2 ) TS Tn) 2oy =)o)+ s = (6) = o=y 6 22)

According to the relation (2.10), we get

LHP(a iZm — ) £ 00 0) + g5 (g = 36 (@ — )2 (6, )0 o).

(2.22)
Let

" " (2501 — 2i1) " (7)o (2
o [0S0, )

4 :
§=0

By using the integral mean value theorem, we have

el / mdt_i($j+1—Ij—l)f”(wj)¢§-k)(w)

, . 4 . 4 |
j=1 - Jj=0

<1 Y BB ) @ 5y) — )6 @

1=

L - x,nJZ'(mo) 0@ | @ = xmlif'%xm)qs&’? (@),

where z;_1 <v; < xj41. By noting that ¢§-k)(x) = ") (z — x;) and by utilizing Taylor series expansion, we get
= (@1 —xm) " (k) " (k+1)
=D 1 (v; =z ()™ (@ = 25) = [ (25)" T (@ = 65) }]
j=1

(21— 2 )" (@0)d6” (), | @t = 2m) " (@) (2)
" T [+ = 1 k

where §; is a real number between ; and x;. Applying estimation (2.16) leads to

h 1 Ck+1

S (Gerb = )" oo + EE b — @) 11" oo + exl1F”10)- (223)

Also, by using the mean value theorem besides estimation (2.16), we can deduce the following inequality

|Z{ By — ) FE) — (@ — )2 ol ()] < OO PN e (224)

I<

If we define the function f(z) in R\ [a,b] as f(x) = 0, by using equation (2.19) and integration by parts formula, we
can get

b oen (k) (4 _
| [ PO g ) < ) (225)
Now, utilizing equations (2.23-2.25) gives the following error estimation
h h
NP (@) = FP (@)oo < O(5) +O0(57) + O(c?). (2.26)
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3. CONSTRUCTION OF METHOD USING M QUASI-INTERPOLATION AND MOL
Consider the nonlinear gB-H equation
up + 0y — Upy = fu(l —u®)(u® —v), x€la,b], t>0 (3.1)
with the following initial and boundary conditions
u(,0) = f(a)
u(a,t) = ga( ) u(b,t) = gy ().

Ineachnodex; :i=1,--- ;m—1wherea =2y <x; <---,z, =0bthe nonlinear generalized Burgers-Huxley equation
can be rewritten as
wp (x4, t) = —au’ (x5, 1)U (@4, 1) + e (25, 1) + Bulzs, t) (1 — ul (x4, 1)) (u® (24, 1) — 7). (3.2)

According to the MQ quasi-interpolation L f(z) in the previous section, we can consider the following approximations
for the spatial derivatives as

m—1 7 /
1 Oli(xi) — ¢y (w4)
w(i,t) 2 5 Y S (ulwg, 1) — (g 1) (3.3)
7=0
and
1 ¢ (i)
o (@ist) = 5 s - _{% (u(ejir,t) = ule;, 1)), (3.4)
=0
where
Om () = Po() — 22 + x4, + 0,
pj(x) =/(z—x;)2+c2, 0<j<m—1
If we set
Cij= 93 (i) ¢}+1(3«”i)7 (3.5)
2(zj+1 — )
7 z;) — % T
Di,j=¢J( ) ¢j+1( )77j:17~-~,m,j=0,-~',m—1, (3.6)
Q(Ij+1 — Ij)
the equation (3.2) reduces to
m—1
ug(x,t) = — au‘s(zi, t) Cij(u(zjy1,t) —ulzj,t))
§=0
m—1 (37)
+ D; j(u(zjy1,t) —u(zj, t) + Bu(z;, t)(1 — u‘s(xi,t))(ué(xi,t) —9).
7=0
Since
m—1
Ci,j (u($j+1, t) — U(IEj, t)) = — Ci7ou(l'(), t) -+ C’iym_lu(wm, t)
7=0 (38)
+ (Cip — Ci)u(z1,t) + - + (Ciym—2 — Ciym—1)u(Tm—1,1),
and
m—1
Di,j (U(l’j+1, t) — U(.’Ej, t)) = — Diyo’u(xo, t) + DLm,lu(l'm,t) (3 9)
j=0 :

+ (Dio — Di)u(xy,t) + -+ - + (Dijm—2 — Dim—1)w(Zm—1,1),
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so from equations (3.8) and (3.9), we have
ug(x5,t) = — au® (24, 8)[(Cio — Cin)u(xy,t) + -+ (Cim—a — Cim—1)u(Tm_1,1)]
— au’(z;, t)[—Ciou(zo,t) + Cs m1u(zm, t)]
+ (Dio— Dix)u(zr,t) + - + (Dijm—2 — Dim—1)u(zm—1,1)
— Dj ou(wo, t) + Dim1u(Tm, t) + Bulzi, t) (1 — u® (i, 1)) (u’ (z4,1) — 7).

We now collocate equation (3.10) in m — 1 points a;; ¢ = 1---m — 1 and hence we can obtain a system of nonlinear
ODE:s as

(3.10)

% _ o). (3.11)
GU) = —aU * (AU + V) + BU + W + U % (I — U®) % (U° —T) (3.12)

where
Aijj=0Cij1—-Cij, Bij=D;;1—Dj,
Vi = —Ciou(zo,t) + Cimo1uw(@m, t), Wi = —D; ou(xo,t) + Dim_1u(Tm, ),
and
=[]0, D=l 0"
By solving this system of ODEs using numerical methods we get the approximate solution for the nonlinear gB-H

equation.

4. NUMERICAL RESULTS

In this section, we provide the numerical results of MQQI-MOL method which was presented in previous section.
To measure the accuracy of the described method, we use two norms

L2 — Huexact _ uapproa:imatellz — hi ‘u;xad _ u?ppromimatelg
§=0
Loo — ||uemact _ uapprozzmatenoo — Ogag)in |u§zact _ ?pprommate|.
In all examples spatial domain is [0, 1], the shape parameter is considered as ¢ = 0.02 and in our computations we
take At = 0.001. For simplicity the nodes in spatial domains is selected as z; = i* Az, i =0,--- ,m where Az is the
spatial step size e.g. Ax =x; —x;—1, i = 1,--- ;m and m=20. Here, for the solution of the system of ODEs we use

the classical fourth-order Runge-Kutta method. The computations have been performed in MAPLE 18 software.

Example 4.1. As the first example, we take the ¢gB-H Eq. (1.1) with the coefficients « = 0, 5 =1, § = 1, and
v =0.001, 0.0001. The Lo and L, errors of the presented method in different values of t are listed in Tables 1 and 2.
In Figure 1, we have plotted the exact and numerical solutions at ¢ = 1. Figure 2 displays the absolute error of the
presented method for the gB-H equation in domain 0 < x < 1 and 0 < ¢ < 1. Moreover, to show the accuracy and
efficiency of the presented method, comparisons among errors of MQQI-MOL method, fourth order improved finite
difference Scheme [5], Gauss Chebyshev Galerkin method [18], El-Gendi Legendre Galerkin method [18], and modified
cubic B-spline differential quadrature method [26] are given in Table 3.

TABLE 1. Ly and Lo errors for the approximate solutions of Example 4.1 with v = 0.001 at some time levels.

Time t=0.1 t=0.3 t=0.5 t=0.7 t=1
Lo 3.3220E-08  4.4251E-08 4.4963E-08 4.5009E-08 4.5011E-08
Lo 2.4614E-08 3.2434E-08 3.2939E-08 3.2971E-08 3.2973E-08
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TABLE 2. L3 and Lo errors for the approximate solutions of Example 4.1 with v = 0.0001 at some time levels.

Time t=0.1 t=0.3 t=0.5 t=0.7 t=1
Loo 3.3231E-10 4.4265E-10 4.4974E-10 4.5022E-10 4.5025E-10
Lo 2.4622E-10 3.2444E-10 3.2947E-10 3.2979E-10 3.2984E-10

TABLE 3. Comparisons of the presented method for Example 4.1 with v = 0.001

t x  MQQI-MOL MCB-DQM][26] FDS4[5] GCG[18]  ELG[18]
0.05 0.1 9.3519E-09 1.0044E-08 2.4988E-08 1.0698E-08 9.2752E-09
0.5 2.1614E-08 2.3047E-08 2.4988E-08 9.2595E-09 9.2595E-09
0.9 8.8872E-09 1.0044E-08 2.4987E-08 7.8921E-09 9.2845E-09
0.1 0.1 1.3152E-08 1.4790E-08 4.9975E-08 2.3188E-08 2.3173E-08
0.5 3.3220E-08 3.8252E-08 4.9975E-08 2.1749E-08 2.1749E-08
0.9 1.2450E-08 1.4790E-08 4.9975E-08 2.0382E-08 2.0360E-08
1 0.1 1.7009E-08 2.2205E-08 4.9975E-07 2.4872E-07 2.4729E-07
0.5 4.5011E-08 6.2169E-08 4.9975E-07 2.4728E-07 2.4728E-07
0.9 1.6065E-08 2.2205E-08 4.9975E-07 2.4591E-07 2.4530E-07
o500 / comsoms Vi
// /
005.00: / 0.00005000: /
/ /
o500 / cowosseon /
/ /
/ /
005.00: / nnnnnnnn /
/ /
/ /
0500 S /
s s
005 00; // uuuuuuuu //
/// ///

(a) Plot of the exact and numerical
solutions for B-H equation with v =
0.001.

(b) Plot of the exact and numerical
solutions for B-H equation with v =
0.0001.

FIGURE 1. The comparison between exact and approximate solution for B-H equation with the coef-
ficients a=0,8=1,d=1ininterval 0 <z <l att=1.

Example 4.2. Here, let’s Consider the gB-H Eq. (1.1) with « =0, 8 =1, 6 = 2 and v = 0.001, 0.0001. In Table
4 and Table 5 the Ly and L, errors of our method at t=0.1, 0.3, 0.5, 0.7, and 1 are reported. According to Figures
3 and 4, we have plotted the graph of exact and approximate solutions of gB-H equation at some of the values of
0 <t < 1. In Table 6 we compare the results of our method with some of the numerical methods to exhibit the
reliability and effectiveness of the proposed method.

Example 4.3. We take the gB-H Eq. (1.1) with « = 1, 8 = 1, § = 1, and v = 0.001, 0.0001. The Lo and Lo,
errors of the presented method in different values of t are listed in Tables 7 and 8. In Figure 5, we have plotted the
an
BE
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(b) Plot of the absolute error for B-H

(a) Plot of the absolute error for B-H
equation with v = 0.0001.

equation with v = 0.001.

FI1GURE 2. The absolute error for B-H equation with the coefficients « =0, 5 =1, § = 1 in domain

0<zr<land 0<t<1.
TABLE 4. Ly and Lo errors for the approximate solutions of Example 4.2 with v = 0.001 at some time levels.

Time t=0.1 t=0.3 t=0.5 t=0.7 t=1
L 1.4857E-06 1.9790E-06 2.0105E-06 2.0126E-06 2.0125E-06
Lo 1.1008E-06 1.4505E-06 1.4729E-06 1.4743E-06 1.4743E-06

TABLE 5. L2 and Lo errors for the approximate solutions of Example 4.2 with v = 0.0001 at some time levels.

Time t=0.1 t=0.3 t=0.5 t=0.7 t=1
4.6993E-08 6.2599E-08 6.3601E-08 6.3648E-08 6.3649E-08

L
Lo 3.4818E-08 4.5883E-08 4.6592E-08 4.6626E-08 4.6625E-08

exact and numerical solutions at ¢ = 1. In Figure 6, the error of the approximate solution at some of the values of t
is given. Table 9 exhibits the results of MQQI-MOL method compared with some of the numerical methods such as
fourth order improved finite difference Scheme [5], Adomian decomposition method [13, 14], and variational iteration

method [3].
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TABLE 6. Comparisons of the presented method for Example 4.2 with v = 0.001

t x MQQI-MOL MCB-DQM[26] FDS4[5]  GCG[18]  ELG[1g]
0.05 0.1 4.1828E-07  4.4924FE-07 1.1176E-06 4.8110E-07 4.2020E-07
0.5 9.6666E-07  1.0307E-06 1.1175E-06  3.9966E-07 3.9966E-07
0.9 3.9745B-07  4.4917E-07 1.1174E-06 3.9240E-07 4.3297E-07
01 0.1 58819E-07 6.6147E-07 2.2353E-06 1.0397E-06 9.7883E-07
0.5 1.4857E-06  1.7107E-06 2.2350E-06 9.5823E-07 9.5823E-07
0.9 5.5674E-07  6.6139E-07 2.2347E-06  9.5091E-07 9.9147E-07
1 01 7.6055E-07 9.9267E-07 2.2353E-05 1.1021E-05 1.1008E-05
0.5 2.0125E-06  2.7793E-06 2.2350E-05 1.1057E-05 1.1057E-05
0.9 7.1824E-07  9.9260E-07 2.2347E-05 1.0841E-05 1.0955E-05

(a) Plot of approximate solution at the

(b) Plot of exact solution at the some

some of values of 0 <t < 1. of values of 0 <t < 1.

FiGure 3. Comparison between the approximate and exact solutions for B-H equation with the
coefficients « =0, =1, 6 = 2, and v = 0.001.

TABLE 7. Lz and Lo errors for the approximate solutions of Example 4.3 with v = 0.001 at some time levels.

Time t=0.1 t=0.3 t=0.5 t=0.7 t=1
Lo 2.4936E-08  3.3219E-08 3.3753E-08 3.3788E-08 3.3792E-08
Lo 1.8482E-08 2.4354E-08 2.4733E-08 2.4757E-08 2.4760E-08

TABLE 8. L2 and Lo errors for the approximate solutions of Example 4.3 with v = 0.0001 at some time levels.

Time t=0.1 t=0.3 t=0.5 t=0.7 t=1
L 2.4943E-10 3.3220E-10 3.3750E-10 3.3765E-10 3.3775E-10
Lo 1.8486E-10 2.4357E-10 2.4729E-10 2.4741E-10 2.4748E-10
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(a) Plot of approximate solution at the
some of values of 0 <t < 1.

(b) Plot of exact solution at the some
of values of 0 <t < 1.

F1GURE 4. Comparison between the approximate and exact solutions for B-H equation with the
coefficients « =0, =1, § = 2, and v = 0.0001.

TABLE 9. Comparisons of the presented method for Example 4.3 with v = 0.001

t x MQQL-MOL FDS4[5]  ADM[14] ADM[13]  VAM[3]
0.05 0.1 7.0382E-09 1.2646E-09 1.9372E-07 1.8741E-08 1.8741E-08
05 1.6222B-08  1.9770E-08 19373E-07 1.8741E-08 1.8741E-08
0.9 6.6906E-09  4.6018E-08 19375E-07 1.8741E-08 1.8741E-08
0.1 0.1 9.8913E-09  6.3953E-09 3.8743E-07 3.7481E-08 3.7481E-08
0.5 24936E-08  3.9956E-08 3.8746E-07 3.7481E-08 1.3748E-08
0.9 9.3660E-09  7.6633E-08 3.8749FE-07 3.7481E-08 3.7481E-08
1 01 1.2788E-08  3.2022E-07 3.8750E-06 3.7481E-07 3.7481E-07
0.5 3.3792E-08  3.7922E-07 3.8753E-06 3.7481E-07 3.7481E-07
0.9 1.2081E-08  4.2922E-07 3.8756E-06 3.7481E-07 3.7481E-07
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(a) Plot of the exact and numerical (b) Plot of the exact and numerical
solutions for B-H equation with v = solutions for B-H equation with v =
0.001. 0.0001.

F1GURE 5. The comparison between exact and approximate solution for B-H equation with the coef-
ficientsa=1,=1,d=1ininterval 0 < x <1 at t = 1.

o 02 04 06

o 02 04 06
x values

x values

(a) The error of the approximate solu- (b) The error of the approximate solu-
tion for B-H equation with v = 0.001 at tion for B-H equation with v = 0.001 at
t=0.2,0.4,0.6,0.8 and 1. t=0.2,0.4,0.6,0.8 and 1.

FI1GURE 6. The error of the approximate solution for B-H equation with the coefficients « = 1, § =1,
6 =1 in interval 0 < z <1 at different time levels.
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5. CONCLUSION

The multiquadric quasi-interpolation method that uses the method of lines has been described. To improve the MQ
quasi-interpolation accuracy, we use method of lines. In conventional methods for the solution of PDEs researchers
use MQ quasi-interpolation and finite difference method for spatial and time derivatives respectively. Because these
methods do not have satisfactory accuracy, we combine MQ quasi-interpolation approach with method of lines. In the
first step the spatial derivatives are approximated by MQ quasi-interpolation operator. So the PDE reduced to a system
of ODEs. Then we applied the classical fourth-order Runge-Kutta scheme for solving this system. From comparison
the results of the presented method to other methods such as ADM, VIM, Galerkin method, finite difference method,
and modified cubic B-spline differential quadrature method, it is observed that our method is reliable and posses high
accuracy.
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