Studying the thermal analysis of rectangular cross section porous fin: A numerical approach

Document Type : Research Paper


1 Department of Mathematics and Engineering Physics, Faculty of Engineering, Mansoura University, Egypt.

2 Université Française d’Egypte, Ismailia Desert Road, El Shorouk, Cairo, Egypt.

3 Department of Mathematics, Faculty of Science, Ege University, 35100 Izmir, Bornova, Turkey.


In this work, a direct computational method has been developed for solving the thermal analysis of porous fins with a rectangular cross-section with the aid of Chebyshev polynomials. The method transforms the nonlinear differential equation into a system of nonlinear algebraic equations and then solved using a novel technique. The solution of the system gives the unknown Chebyshev coefficients. An algorithm for solving this nonlinear system is presented. The results are obtained for different values of the variables and a comparison with other methods is made to demonstrate the effectiveness of the method. 


  • [1]          A. Abedini, T. Armaghani, and A. Chamkha, MHD free convection heat transfer of a water–Fe 3 O 4 nanofluid  in a baffled C-shaped enclosure, Journal of Thermal Analysis and Calorimetry, 135 (2019), 685–695. DOI: 10.1007/s10973-018-7225-8.
  • [2]          W. Adel and Z. Sabir, Solving a new design of nonlinear second-order Lane–Emden pantograph delay differential model via Bernoulli collocation method, The European Physical Journal Plus, 135 (2020), 427–439. DOI: 10.1140/epjp/s13360-020-00449-x.
  • [3]          H. Binous, S. Kaddeche, and A. Bellagi, Solving two‐dimensional chemical engineering problems using the Cheby- shev orthogonal collocation technique, Computer Applications in Engineering Education, 24 (2016), 144–155. DOI: 10.1002/cae.21680.
  • [4]          J. Body, Chebyshev and Fourier Spectral Methods, University of Michigan, New York, 2000.
  • [5]          I. Celik, Free vibration of non-uniform Euler–Bernoulli beam under various supporting conditions using Chebyshev wavelet collocation method, Applied Mathematical Modelling, 54 (2018), 268–280. DOI: 10.1016/j.apm.2017.09.041.
  • [6]          A. Chamkha, Hydromagnetic natural convection from an isothermal inclined surface adjacent  to  a  thermally  stratified porous medium, International Journal of Engineering Science, 35(10) (1997), 975–986. DOI: 10.1016/S0020-7225(96)00122-X.
  • [7]          A. Dabiri and E. Butcher, Stable fractional Chebyshev differentiation matrix for the numerical solution of multi- order fractional differential equations, Nonlinear Dynamics, 90 (2017), 185–201. DOI: 10.1007/s11071-017-3654-3.
  • [8]          M. Delkhosh and K. Parand, Numerical Solution of the Nonlinear Integro-Differential Equations of Multi-Arbitrary Order, Thai Journal of Mathematics, 16(2) (2018), 471–488.
  • [9]          S. Hoseinzadeh, A. Moafi, A. Shirkhani, and A. Chamkha, Numerical validation heat transfer of rectangular cross-section porous fins, Journal of Thermophysics and Heat Transfer, 33(3) (2019), 698–704. DOI: 10.2514/1.T5583.
  • [10]        S. Hoseinzadeh, P. Heyns, A. J. Chamkha, and A. Shirkhani, Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods, Journal of Thermal Analysis and Calorimetry, 138 (2019), 727–735. DOI: 10.1007/s10973-019-08203-x.
  • [11]        H. Jouybari, S. Javaniyan, S. Saedodin, A. Zamzamian, and M. Eshagh Nimvari, Experimental investigation of thermal performance and entropy generation of a flat-plate solar collector filled with porous media,  Applied  Thermal Engineering, 127 (2017), 1506–1517. DOI: 10.1016/j.applthermaleng.2017.08.170.
  • [12]        H. Jouybari, S. Javaniyan, S. Saedodin, A. Zamzamian, M. Eshagh Nimvari, and S. Wongwises, Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector:  an  experimental  study,  Renewable Energy, 114 (B) (2017), 1407–1418. DOI: 10.1016/j.renene.2017.07.008.
  • [13]        F. Keshavarz, A. Mirabdolah Lavasani, and H. Bayat, Numerical analysis of effect of nanofluid and fin distribution density on thermal and hydraulic performance of a heat sink with drop-shaped micropin fins, Journal of Thermal Analysis and Calorimetry, 135 (2019), 1211–1228. DOI: 10.1007/s10973-018-7711-z.
  • [14]        Y. Menni, A. Azzi, and A. Chamkha, Enhancement of convective heat transfer in smooth air channels with wall- mounted obstacles in the flow path, Journal of Thermal Analysis and Calorimetry, 135 (2019), 1951–1976. DOI: 10.1007/s10973-018-7268-x.
  • [15]        M. Morgado, M. Rebelo, L. Ferras, and N. J. Ford, Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method, Applied Numerical Mathematics, 114 (2017), 108–123. DOI: 10.1016/j.apnum.2016.11.001.
  • [16]        J. Mason and D. C. Handscomb, Chebyshev polynomials, CRC press, 2002.
  • [17]        A. Nematpour and M. Sheikholeslami, Nanoparticle enhanced PCM applications for intensification of thermal performance in building: a review, Journal of Molecular Liquids, 274 (2019), 516–533. DOI: 10.1016/j.molliq.2018.10.151.
  • [18]        E. Lublóy, K. Kopecskó, G. L. Balázs, I. Miklós Szilágyi, and J. Madarász, Improved fire resistance by using slag cements, Journal of thermal analysis and calorimetry, 125 (2016), 271–279. DOI: 10.1007/s10973-016-5392-z.
  • [19]        M. Iman, Novel Chebyshev wavelets algorithms for optimal control and analysis of general linear delay models, Applied Mathematical Modelling, 69 (2019), 621–647. DOI: 10.1016/j.apm.2018.12.009.
  • [20]        Y. Oztürk, Numerical solution of systems of differential equations using operational matrix method with Chebyshev polynomials, Journal of Taibah University for Science, 12 (2018), 155–162. DOI: 10.1080/16583655.2018.1451063.
  • [21]        M. Sahlan and H. Feyzollahzadeh, Operational matrices of Chebyshev polynomials for solving singular Volterra integral equations, Mathematical Sciences, 11 (2017), 165–171. DOI: 10.1007/s40096-017-0222-4.
  • [22]        V. Saw and S. Kumar, Fourth Kind Shifted Chebyshev Polynomials for Solving Space Fractional Order Advection– Dispersion Equation Based on Collocation Method and Finite Difference Approximation, International Journal of Applied and Computational Mathematics, 4 (2018), 82. DOI: 10.1007/s40819-018-0517-7.
  • [23]        F. Selimefendigil, H. Oztop, and A. J. Chamkha, MHD mixed convection in a nanofluid filled vertical lid-driven cavity having a flexible fin attached to its upper wall, Journal of Thermal Analysis and Calorimetry, 135 (2019), 325–340. DOI: 10.1007/s10973-018-7036-y.
  • [24]        F. Selimefendigil, H. Oztop, and A. J. Chamkha, Natural convection in a CuO–water nanofluid filled cavity under the effect of an inclined magnetic field and phase change material (PCM) attached to its vertical wall, Journal of Thermal Analysis and Calorimetry, 135 (2019), 1577–1594. DOI: 10.1007/s10973-018-7714-9.
  • [25]        M. Sheikholeslami, New computational approach  for  exergy and entropy analysis of nanofluid  under the impact     of Lorentz force through a porous media, Computer Methods in Applied Mechanics and Engineering, 344 (2019), 319–333. DOI: 10.1016/j.cma.2018.09.044.
  • [26]        M. Sheikholeslami and A. Zeeshan, Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM, Computer Methods in Applied Mechanics and Engineering, 320 (2017), 68–81. DOI: 10.1016/j.cma.2017.03.024.
  • [27]        M. Sheikholeslami and D. D. Ganji, Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect, Journal of Molecular Liquids, 224 (A) (2016), 526–537. DOI: 10.1016/j.molliq.2016.10.037.
  • [28]        M. Sheikholeslami and O. Mahian, Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems, Journal of cleaner production, 215 (2019), 963–977. DOI: 10.1016/j.jclepro.2019.01.122.
  • [29]        M. Sheikholeslami and O. Mahian, Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems, Journal of cleaner production, 215 (2019), 963–977. DOI: 10.1016/j.jclepro.2019.01.122.
  • [30]        M. Sheikholeslami and S. A. Shehzad, Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model, International Journal of Heat and Mass Transfer, 120 (2018), 1200–1212. DOI: 10.1016/j.ijheatmasstransfer.2017.12.132.
  • [31]        M. Sheikholeslami, D. D. Ganji, and M. M. Rashidi, Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model, Journal of Magnetism and Magnetic Materials, 416 (2016), 164–173. DOI: 10.1016/j.jmmm.2016.05.026.
  • [32]        M. Sheikholeslami, H. Sajjadi, A. Amiri Delouei, M. Atashafrooz, and Z. Li, Magnetic force and radiation in- fluences on nanofluid transportation through a permeable media considering Al 2 O 3 nanoparticles, Journal of Thermal Analysis and Calorimetry, 136 (2019), 2477–2485. DOI: 10.1007/s10973-018-7901-8.
  • [33]        M. Sheikholeslami, M. Jafaryar, Ahmad Shafee, and Z. Li, Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles, Journal of Thermal Analysis and Calorime- try, 134 (2018), 2295–2303. DOI: 10.1007/s10973-018-7866-7.
  • [34]        M. Sheikholeslami, M. Gorji-Bandpy, and D. Domiri Ganji, Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid, Powder Technology, 254 (2014), 82–93. DOI: 10.1016/j.powtec.2013.12.054.
  • [35]        M. Sheikholeslami, R. ul Haq, A. Shafee, and Z. Li, Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins, International Journal of Heat and Mass Transfer, 130 (2019), 1322–1342. DOI: 10.1016/j.ijheatmasstransfer.2018.11.020.
  • [36]        M. Sheikholeslami, Z. Ziabakhsh, and D. D. Ganji, Transport of Magnetohydrodynamic nanofluid in a porous media, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520 (2017), 201–212. DOI: 10.1016/j.colsurfa.2017.01.066.
  • [37]        M. Sheikholeslami and D. Domairry Ganji, Applications of nanofluid for heat transfer enhancement, William Andrew, (2017).
  • [38]        M. Sheikholeslami and D. Domairry Ganji, Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM, Computer Methods in Applied Mechanics and Engineering, 283 (2015), 651–663. DOI: 10.1016/j.cma.2014.09.038.
  • [39]        M. Sheikholeslami, Application of Darcy law for nanofluid flow in a porous  cavity under the impact of Lorentz forces, .” Journal of Molecular Liquids, 266 (2018), 495–503. DOI: 10.1016/j.molliq.2018.06.083
  • [40]        I. Szilágyi, B. Fórizs, O. Rosseler, A. Szegedi, P. Németh, P. Király, G Tárkányi, B. Vajna, K. Varga-Josepovits, László, A. L.Tóth, P. Baranyai, and M. Leskelä, WO3 photocatalysts: Influence of structure and composition, Journal of Catalysis, 294 (2012), 119–127. DOI: 10.1016/j.jcat.2012.07.013
  • [41]        I. Szilágyi, E. Santala, M. Heikkilä, M. Kemell, T. Nikitin, L. Khriachtchev, M. Räsänen, M. Ritala, and M. Leskelä, Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO 3 nanofibers., .Journal of thermal analysis and calorimetry, 105 (2011). DOI: 10.1007/s10973-011-1631-5
  • [42]        I. Szilágyi, G. Teucher, E. Härkönen, E. Färm, T. Hatanpää, T. Nikitin, L. Khriachtchev, M. Räsänen, M. Ritala, and M. Leskelä, Programming nanostructured soft biological surfaces by atomic layer deposition., Nanotechnology, 24 (2013). DOI: 10.1088/0957-4484/24/24/245701.
  • [43]        I. Szilágyi, J. Madarász, G. Pokol, P. Király, G. Tárkányi, S. Saukko, J. Mizsei, A. Tóth, A. Szabó, K. Varga- Josepovits, Stability and controlled composition of hexagonal WO3, Chemistry of Materials 20 (2008). DOI: 10.1021/cm800668x.
  • [44]        I. Szilágyi, S. Saukko, J. Mizsei, A. Tóth, J. Madarász, and G. Pokol, Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S, Solid state sciences 12 (2010), 1857-1860. DOI: 10.1016/j.solidstatesciences.2010.01.019.
  • [45]        J. Xie, Z. Yao, H. Gui, F. Zhao, and D.Li, A two-dimensional Chebyshev wavelets approach for solving the Fokker- Planck equations of time and space fractional derivatives type with variable coefficients, Applied Mathematics and Computation, 332 (2018), 197-208. DOI: 10.1016/j.amc.2018.03.040.
  • [46]        G.Yang, Modified Chebyshev collocation method for pantograph-type differential equations, Applied Numerical Mathematics, 134 (2018), 132-144. DOI: 10.1016/j.apnum.2018.08.002.
  • [47]        F. Zhou and X. Xu, Numerical solution of fractional Volterra-Fredholm integro-differential equations with mixed boundary conditions via Chebyshev wavelet method, International Journal of Computer Mathematics, 96 (2019), 436-456. DOI: 10.1080/00207160.2018.1521517.
Volume 10, Issue 2
April 2022
Pages 338-350
  • Receive Date: 09 January 2020
  • Revise Date: 11 February 2021
  • Accept Date: 17 February 2021
  • First Publish Date: 22 February 2021