Modulation instability analysis, optical solitons and other solutions to the (2+1)-dimensional hyperbolic nonlinear Schrodinger’s equation

Document Type : Research Paper


1 Faculty of Science, Federal University Dutse, Jigawa, Nigeria.

2 Department of Computer Engineering, Biruni University Istanbul, Turkey.

3 Punjab University College of Information Technology, University of the Punjab, Lahore 54000, Pakistan.

4 Department of Mathematics, Faculty of Science, University of Gujrat 50700, Pakistan.

5 Department of mathematics, Faculty of Science, University of Gujrat 50700, Pakistan.


The current study utilizes the extended sinh-Gordon equation expansion and ( G'/G2)-expansion function methods in constructing various optical soliton and other solutions to the (2+1)-dimensional hyperbolic nonlinear Schrodinger’s equation which describes the elevation of water wave surface for slowly modulated wave trains in deep water in hydrodynamics. We secure different kinds of solutions like optical dark, bright, singular, combo solitons as well as hyperbolic and trigonometric functions solutions. Moreover, singular periodic wave solutions are recovered and the constraint conditions which provide the guarantee to the soliton solutions are also reported. In order to shed more light on these novel solutions, graphical features 3D, 2D and contour with some suitable choice of parameter values have been depicted. We also discuss the stability analysis of the studied nonlinear model with aid of modulation instability analysis. 


  • [1]          M. N. Alam and X. Li, New soliton solutions to the nonlinear complex fractional Schrodinger equation and the conformable time-fractional Klein-Gordon equation with quadratic and cubic nonlinearity, Phys. Scr., 95 (2020), 045224.
  • [2]          M. N. Alam and X. Li, Exact traveling wave solutions to higher order nonlinear equations, Journal of Ocean Engineering and Science, 4 (2019), 276-288.
  • [3]          M. N. Alam and C. Tunc, Constructions of the optical solitons and other solitons to the conformable fractional ZakharovKuznetsov equation with power law nonlinearity, Journal of Taibah University for Science, 14 (2019), 94-100.
  • [4]          M. N. Alam and C. Tunc, The new solitary wave structures for the (2 + 1)- dimensional time-fractional Schrodinger equation and the space-time nonlinear conformable fractional Bogoyavlenskii equations, Alexandria Engineering Journal, 59 (4) (2020), 2221-2232.
  • [5]          M. N. Alam and C. Tunc, An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predatorprey system, Alexandria Engineering Journal, 55 (2) (2016), 1855-1865.
  • [6]          M. N. Alam, Exact solutions to the foam drainage equation by using the new generalized G′ -expansion method, Results in Physics, 5 (2015), 168-177.
  • [7]          M. N. Alam and M.M. Alam, Ananalytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules, Journal of Taibah University for Science, 11 (6) (2017), 939-948.
  • [8]          M. N. Alam and M. A. Akbar,Traveling wave solutions for the mKdV equation and the Gardner equations by new approach of the generalized G′ -expansion method, Journal of the Egyptian Mathematical Society, 22 3 (2014), 402-406.
  • [9]          M. N. Alam and M. A. Akbar, Some new exact traveling wave solutions to the simplified MCH equation and the (1+ 1)-dimensional combined KdVmKdV equations, Journal of the Association of Arab Universities for Basic and Applied Sciences, 17 (2014), 6-13.
  • [10]        M. N. Alam and M. A. Akbar, A novel G′ -expansion method for solving the (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation in mathematical physics, Int. J. Comput. Sci. Math., 6 (4) (2015), 404-415.
  • [11]        M. N. Alam, M. A. Akbar, and M. F. Hoque, Exact travelling wave solutions of the (3+1)-dimensional mKdV-ZK equation and the (1+1)-dimensional compound KdVB equation using the new approach of generalized G′ -expansion method, Pramana J. Phys., 83 (3) (2014), 317-329.
  • [12]        M. N. Alam, M. A. Akbar, and S. T. Mohyud-Din, A novel G′ -expansion method and its application to the Boussinesq equation, Chin. Phys. B, 23 (2014), 020203.
  • [13]        S. Arshed, A. Biswas, F. Mallawi, and M. R. Belic, Optical solitons with complex GinzburgLandau equation having three nonlinear forms, Phys. Lett. A, 383 (2019), 126026.
  • [14]        S. Arshed and N. Raza, Optical solitons perturbation of Fokes-Lenells equation with full non linearity and dual dispersion, Chin. J. Phy., 63 (2020), 314-324.
  • [15]        A.I. Aliyu, M. Inc, and A. Yusuf, Optical solitary waves and conservation laws to the (2+1)-dimensional hyperbolic nonlinear Schr¨odinger equation, Mod. Phys. Lett. B, 32 (3) (2018), 1850373.
  • [16]        G. Ai-Lin and L. Ji, Exact Solutions of (2+1)-Dimensional HNLS Equation, Commun. Theor. Phys. 54 (2010), 401.
  • [17]        H.  Bulut,  T.  A.  Sulaiman,  and  B.  Demirdag,  Dynamics  of  soliton  solutions  in  the  chiral  nonlinear  Schr¨odinger equations, Nonlinear Dyn., 91(3) (2018), 1985-1991.
  • [18]        A. Biswas, Q. Zhou, M. Z. Ullah, H. Triki, S. P. Moshokoa, and M. Belic, Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle, Optik, 143 (2017), 131-134.
  • [19]        H. M. Baskonus, H. Bulut, and A. Atangana, On the Complex and Hyperbolic Structures of Longitudinal Wave Equation in a Magneto-Electro-Elastic Circular Rod, Smart. Mater. Struct., 25 (3) (2016), 035022.
  • [20]        H. M. Baskonus, M. Younis,  M. Bilal,  U. Younas,  S. U. Rehman,  and W. Gao,  Modulation instability analysis  and perturbed optical soliton and other solutions to the Gerdjikov-Ivanov equation in nonlinear  optics,  Modern  Physics Letters B, 34 (35) (2020), 2050404.
  • [21]        A. Biswas, M. Mirzazadeh, M. Eslami, Q. Zhou, A. Bhrawy, and M. Belic, Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method, Optik, 127 (18) (2016), 7250-7257.
  • [22]        H. Bulut, T. A. Sulaiman, H. M. Baskonus, and T. Akturk, On the bright and singular optical solitons to the (2+1)-dimensional NLS and the Hirota equations, Opt. Quan.t Electron., 50 (2018), 134.
  • [23]        M. Bilal, A. R. Seadawy, M. Younis, S. T. R. Rizvi, and H. Zahed, Dispersive of propagation wave solutions to unidirectional shallow water wave DullinGottwaldHolm system and modulation instability analysis, Mathematical Methods in the Applied Sciences, (2020), DOI: 10.1002/mma.7013.
  • [24]        M. Inc, A.I. Aliyu, A. Yusuf, and D. Baleanu, Dark-bright optical solitary waves and modulation instability analysis with (2 + 1)-dimensional cubic-quintic nonlinear Schr¨odinger equation, Waves Random Complex., 29 (3) (2019), 393-402.
  • [25]        H. U. Rehman, M. Younis, S. Jafar, M. Tahir, and M. S. Saleem, Optical Solitons of Biswas-Arshed Model in Birefrigent Fiber Without Four Wave Mixing, Optik, 213 (2020), 164669.
  • [26]        S. U. Rehman, A. Yusuf, M. Bilal, U. Younas, M. Younis, and T. A. Sulaiman, Application of G′ -expansion method to microstructured solids, magneto-electro-elastic circular rod and (2+1)- dimensional nonlinear electrical lines, MESA,, 11 (4) (2020), 789-803.
  • [27]        A. R. Seadawy, Modulation instability analysis for the generalized derivative higher order nonlinear Schr¨odinger equation and its the bright and dark soliton solutions, J. Electromagnet. Wave., 31 (14) (2017), 1353-1362.
  • [28]        T. A. Sulaiman, T. Akturk, H. Bulut, and H.M. Baskonus, Investigation of various soliton solutions  to  the Heisenberg ferromagnetic spin chain equation, J. Electromagnet. Wave., 32 (9) (2018), 1093-1105.
  • [29]        T. A. Sulaiman, G. Yel, and H. Bulut, M-fractional solitons and periodic wave solutions to the Hirota-Maccari system, Mod. Phys. Lett. B, 33 (05) (2019), 1950052.
  • [30]        H. Wang, S. F. Tian, and T. T. Zhang, Dynamics of kink solitary waves and lump waves with interaction phe- nomena in a generalized (3+1)-dimensional KadomtsevPetviashviliBoussinesq equation, Int. J. Comput. Math., 96 (2018), 1-14.
  • [31]        X. Xian-Lin and T. Jia-Shi, Travelling Wave Solutions for Konopelchenko-Dubrovsky Equation Using an Extended sinh-Gordon Equation Expansion Method, Commun. Theor. Phys., 50 (2008), 1047.
  • [32]        M. Younis, T. A. Sulaiman, M. Bilal, S. U. Rehman, and U. Younas, Modulation instability analysis, optical and other solutions to the modified nonlinear Schrodinger equation, Commun. Theor. Phys., 72 (2020), 065001.
  • [33]        B. Younas and M. Younis, Chirped solitons in optical monomode fibres modelled with ChenLeeLiu equation, Pramana. J. Phys., 94 (2020), 3.
  • [34]        M. Younis, U. Younas, S. U. Rehman, M. Bilal, and A. Waheed, Optical bright dark and Gaussian soliton with third order dispersion, Optik, 134 (2017), 233-238.
  • [35]        M. Younis, S. T. Rizvi, A. Sardar, S. A. Mahmood, and A. Bekir, On traveling wave solutions: the decoupled nonlinear Schrodinger equations with inter modal dispersion, Computational Methods for Differential Equations, (2020), DOI:10.22034/cmde.2019.34431.1574.
  • [36]        U. Younas, A. R. Seadawy, M. Younis, and S. T. R. Rizvi, Dispersive of propagation wave structures to the dullin-Gottwald-Holm dynamical equation in a shallow water waves, Chin. J. Phys., 68 (2020), 348364.
  • [37]        M. Younis, M. Bilal, S. U. Rehman, U. Younas, and S. T. R. Rizvi, Investigation of optical solitons in birefringent polarization preserving fibers with four-wave mixing effect, International Journal of Modern Physics B, 34 (11) (2020), 2050113.
  • [38]        U. Younas, A. R. Seadawy, M. Younis, and S. T. R. Rizvi, Optical solitons and closed form solutions to the (3+ 1)-dimensional resonant Schrodinger dynamical wave equation, International Journal of Modern Physics B, 34 (30) (2020), 2050291.
  • [39]        U. Younas, A. R. Seadawy, M. Younis, and S. T. R. Rizvi, Construction of analytical wave solutions to  the conformable fractional dynamical system of ion sound and Langmuir waves, Waves in  Random  and  Complex  Media, (2020),
  • [40]        U. Younas, A. R. Seadawy, M. Younis, S. T. R. Rizvi, S. Althobaiti, and S. Sayed, Diverse exact solutions for modified nonlinear Schrodinger equation with conformable fractional derivative, Results in Physics, 20 (2020), 103766.
  • [41]        Q. Zhou, M. Ekici, M. Mirzazadeh, and A. Sonmezoglu, The investigation of soliton solutions of the coupled sine-Gordon equation in nonlinear optics, J. Mod. Opt., 64 (16) (2017), 1677-1682.
  • [42]        Q. Zhou and A. Biswas, Optical solitons in parity-time-symmetric mixed linear and nonlinear lattice with non-Kerr   law nonlinearity, Superlattic. Microst., 109 (2017), 588-598.