In this study, a radial basis functions (RBFs) method for solving nonlinear timeand space-fractional Fokker-Planck equation is presented. The time-fractional derivative is of the Caputo type, and the space-fractional derivatives are considered in the sense of Caputo or Riemann-Liouville. The Caputo and Riemann-Liouville fractional derivatives of RBFs are computed and utilized for approximating the spatial fractional derivatives of the unknown function. Also, in each time step, the time-fractional derivative is approximated by the high order formulas introduced in [6], and then a collocation method is applied. The centers of RBFs are chosen as suitable collocation points. Thus, in each time step, the computations of fractional Fokker-Planck equation are reduced to a nonlinear system of algebraic equations. Several numerical examples are included to demonstrate the applicability, accuracy, and stability of the method. Numerical experiments show that the experimental order of convergence is 4 − α where α is the order of time derivative.
[1] M. H. Al-Towaiq and Y. S. Abu hour, Two improved classes of Broyden’s methods for solving nonlinear systems of equations, J. Math. Computer Sci., 17 (2017), 22–31.
[2] A. Aminataei and S. K. Vanani, Numerical Solution of fractional Fokker-Planck equation using the operational collocation method, Appl. Comput. Math., 12(1) (2013), 33–43.
[3] L. Beilina, Adaptive finite element/difference method for inverse elastic scattering waves, Appl. comput. Math., 2(2) (2003), 119–134.
[4] M. Bologna, C. Tsallis, and P. Grigolini, Anomalous diffusion associated with nonlinear frac- tional derivative Fokker-Planck-Like equation: Exact time dependent solutions, Phys. Rev. E, 62(2) (2000), 2213–2218.
[5] M. D. Buhman, Spectral convergence of multiquadratic interpolation, Proc. Edinburg Math. Soc., 36 (1993), 319–333.
[6] J. X. Cao, C. P. Li, and Y. Q. Chen, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II), Fract. Calc. Appl. Anal., 18(3) (2015), 735–761.
[7] R. E. Carlson and T. A. Foley, The parameter r2 in multiquadratic interpolation, Comput. Math. Appl., 21 (1991), 29–42.
[8] S. Chen, F. Liu, P. Zhuang, and V. Anh, Finite difference approximations for the fractional Fokker-Planck equation, Appl. Math. Model., 33(1) (2009), 256–273.
[9] W. Deng, Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput. Phys., 227(2) (2007), 1510–1522.
[10] M. Duarte and J. T. Oden, An h − p adaptive method using clouds, Comput. Methods Appl. Mech. Engrg., 139 (1996), 237–262.
[11] A. Golbabai, E. Mohebianfar, and H. Rabiei, On the new variable shape parameter strategies for radial basis functions, Comp. Appl. Math., 34 (2015), 691–704.
[12] A. Golbabai and H. Rabiei, A meshfree method based on radial basis functions for the eigen- values of transient Stokes equations, Eng. Anal. Bound. Elem., 36(11) (2012), 1555–1559.
[13] A. Golbabai and A. Saeedi, An investigation of radial basis function approximation methods with application in dynamic investment model, IJST, 39A2 (2015), 221–231.
[14] E. J. Kansa, Multiquadrics a scattered data approximation scheme with applications to com- putational fluid-dynamics-I, Comput. Math. Appl., 19 (1990), 127–145.
[15] F. Liu, V. Anh, and I. Turner, Numerical solution of the space fractional Fokker-Planck equa- tion, J. Comput. Appl. Math., 166(1) (2004), 209–219.
[16] W. K. Liu and W. M. Han, Reproducing kernel element method. Part I: Theoritical information, Comput. Methods Appl. Mech. Engrg., 193 (2004), 933–951.
[17] J. Ma and Y. Liu, Exact solutions for a generalized nonlinear fractional Fokker-Planck equation, Nonlinear Analysis: Real World Applications, 11 (1) (2010), 515–521.
[18] J. M. Melenk and I. Babuska, The partition of unity method: basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139 (1996), 289–314.
[19] R. Metzler, E. Barkai and, J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82(1) (1999), 35–63.
[20] R. Metzler and J. Klafter, The fractional Fokker-Planck equation: dispersive transport in an external force field, J. of Molec. Liq., 86(2) (2000), 219–228.
[21] Z. Odibat and S. Momani, Numerical solution of Fokker-Planck equation with space- and time- fractional derivatives, Phys. Lett. A, 369(5) (2007), 349–358
[22] C. Piret and E. Hanert, A radial basis functions method for fractional diffusion equations, J. Comput. Phys., 238 (2013), 71–81.
[23] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[24] A. Prakash and H. Kaur, Numerical solution for fractional model of Fokker-Planck equation by using q-HATM, Chaos, Solitons and Fractals, 105 (2017), 99–110.
[25] A. Saravanan and N. Magesh, An efficient computational technique for solving the Fokker- Planck equation with space and time fractional derivatives, J. King Saud Univer., 28 (2016), 160–166.
[26] S. A. Sarra , A random variable shape parameter strategy for radial basis function approximation methods, Eng. Anal. Bound. Elem., 33 (2009), 1239–1245.
[27] I. J. Schoenberg, Metric spaces and completely monotone functions, Ann. Math., 39 (1938), 811–841.
[28] C. Tsallis and E. K. Lenzi, Anomalous diffusion: Nonlinear fractional Fokker-Planck equation, Chem. Phys., 284(1) (2002), 341–347.
[29] L. Yan, Numerical solutions of fractional Fokker-Planck equations using iterative Laplace trans- form method, Abstr. Appl. Anal., Article ID 465160, (2013), DOI: 10.1155/2013/465160, 7 pages.
[30] A. Yildirim, Analytical approach to Fokker-Planck equation with space- and time-fractional derivatives by means of the homotopy perturbation method, J. King Saud Univ., 22(4) (2010), 257–264.
[31] M. P. Zorzano, H. Mais, and L. Vazquez, Numerical solution of two dimensional Fokker-Planck equations, Appl. Math. Comput., 98 (1999), 109–117.