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Abstract In this study, a radial basis functions (RBFs) method for solving nonlinear time-

and space-fractional Fokker-Planck equation is presented. The time-fractional de-
rivative is of the Caputo type, and the space-fractional derivatives are considered
in the sense of Caputo or Riemann-Liouville. The Caputo and Riemann-Liouville
fractional derivatives of RBFs are computed and utilized for approximating the spa-

tial fractional derivatives of the unknown function. Also, in each time step, the
time-fractional derivative is approximated by the high order formulas introduced in
[6], and then a collocation method is applied. The centers of RBFs are chosen as

suitable collocation points. Thus, in each time step, the computations of fractional
Fokker-Planck equation are reduced to a nonlinear system of algebraic equations.
Several numerical examples are included to demonstrate the applicability, accuracy,
and stability of the method. Numerical experiments show that the experimental

order of convergence is 4− α where α is the order of time derivative.
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1. Introduction

In this article, we consider a type of nonlinear time- and space-fractional Fokker-
Planck equation (FFPE)

∂αu(x, t)

∂tα
=

[
− ∂β

∂xβ
A
(
x, t, u(x, t)

)
+

∂2β

∂x2β
B
(
x, t, u(x, t)

)]
u(x, t)+

f(x, t), 0 ≤ x ≤ 1, t ≥ 0,

(1.1)

with the initial condition

u(x, 0) = g(x), 0 ≤ x ≤ 1, (1.2)
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and boundary conditions

u(0, t) = h1(t), (1.3)

u(1, t) = h2(t), (1.4)

where ∂αu(x,t)
∂tα denotes the Caputo time fractional derivative of order α ∈ (0, 1).

Also, ∂βu(x,t)
∂xβ and ∂2βu(x,t)

∂x2β are either Caputo or Riemann-Liouville spatial fractional
derivatives of orders β (0.5 < β < 1) and 2β, respectively. Moreover, h1(t), h2(t) and
g(x) are known functions and f(x, t) is the source term.

The FFPE arise in some important fields of Physics such as electromagnetic waves
[3], dispersive transport [20], etc. In addition, this equation is applied in modeling of
anomalous diffusive and sub-diffusive systems [4, 19, 28].

There is not any method for finding the exact solution of FFPEs. Several approx-
imate and numerical methods for solving the FFPEs have been introduced. Chen et
al. introduced a finite difference scheme for FFPE [8]. In [9], a method of lines for
solving the time-FFPE was presented. Also, the homotopy perturbation method [30],
a variational iterative method [21], and the iterative Laplas transform method [29]
were applied for the time- and space-FFPE. For more studies, e. g., see [2, 15, 17, 25].

In most of the methods introduced for solving fractional PDEs, the finite differ-
ence and finite elements methods are applied for discretizing the fractional derivatives,
while the fractional derivatives are non-local differential operators and so the non-local
methods such as the radial basis functions (RBFs) method are more efficient for dis-
cretizing them. The RBFs methods are performed without any mesh generation and
are efficient especially for solving problems with arbitrary geometry [22]. Further-
more, the RBFs methods are usually more accurate than low order methods, such as
finite differences, finite volumes, and finite elements.

In Table 1, some well-known globally supported RBFs are presented. Let x∗ ∈ Rd

be a fixed point and r = ∥x − x∗∥2 for any x ∈ Rd. A radial function ϕ∗ = ϕ(r)
depends only on the distance between x ∈ Rd and fixed point x∗ ∈ Rd. Hence,
the RBF ϕ∗ is radially symmetric about x∗. Clearly, the functions in Table 1 are
globally supported, infinitely differentiable and depend to a free parameter c which
is called shape parameter. There are some strategies to choose the valuable shape
parameter, although finding the optimal values of c which produce the most accurate
interpolation is still an open problem. Some of these strategies are listed in Table 2.
Let x1, x2, ..., xM be a given set of distinct points in Rd. The idea behind the use of

Table 1. Some well-known functions that generate RBFs.

Name of function Definition
Gaussian (GS) ϕ(r) = exp(−cr2)

Hardy multiquadric (MQ) ϕ(r) =
√
1 + c2r2

Inverse multiquadric (IMQ) ϕ(r) = (
√
1 + c2r2)−1

Inverse quadric (IQ) ϕ(r) = (1 + c2r2)−1
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RBFs is interpolation by translations of a single function i.e.

F (x) =
M∑
i=1

λiϕi(x), (1.5)

where ϕi(x) = ϕ(∥x−xi∥) and λi are unknown scalars for i = 1, ...,M . The unknown
scalars λi are found so that F (xj) = fj for j = 1, ...,M . Thus, the following linear
system of equations is obtained

Az = f, (1.6)

where A = [ai,j ] with ai,j = ϕi(xj) for 1 ≤ i, j ≤ M, z = [λ1, ..., λM ]T and f =
[f1, ..., fM ]T . For distinct interpolation points for GS, IMQ and IQ, the matrix A is
positive definite, and therefore, nonsingular [27]. Moreover, the matrix A is usually
very ill-conditioned i.e. the condition number of A

κs(A) = ∥A∥s∥A−1∥s, s = 1, 2,∞, (1.7)

is a very large number. Therefore, we have to use more precision arithmetics than
the standard floating point arithmetic in our computations.
In [5, 7, 16, 18], the authors showed that the interpolating of smooth data using
global, infinitely differentiable RBFs has spectral accuracy. For more information, e.
g., see [10, 31].

In this work, the high order difference formulas introduced in [6] are applied for
discretizing on time variable. In each time step, the solution of Eqs. (1.1)-(1.4) is
approximated by a linear combination of RBFs with unknown coefficients. To find
the coefficients, these linear combinations and their fractional derivatives must be
substituted in FFPE (1). So, the fractional derivatives of RBFs are computed and
applied for approximating spatial fractional derivatives of unknown function. In each
time step, using a collocation method the computations of FFPE are reduced to a
nonlinear system of algebraic equations. These nonlinear systems can be solved by
the Newton iteration method. Our method gives a closed form approximate solution,
in each time step. The numerical examples show that the experimental order of
convergence is 4− α where α is the order of time derivative.

The organization of the paper is as follows: In section 2, some basic definitions and
theorems on the fractional calculus are presented, and the Newton iteration method
for solving the systems of nonlinear algebraic equations is described . In section 3,
the Caputo and Riemann-Liouville fractional derivatives of RBFs are obtained. In
section 4, the solution of Eq. (1.1) by RBFs is considered. Section 5 is devoted to
the numerical experiments.

2. Preliminaries

2.1. Basic definitions and theorems.
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Table 2. Some common shape parameter strategies [11, 12, 13, 14, 26]

Name of strategies cj, j = 1, ...,M

EPS cj =

(
c2min

(
c2max

c2min

) j−1
M−1

) 1
2

ILSP cj = cmin + ( cmax−cmin

M−1 )(j− 1)

DLSP cj = cmax + ( cmin−cmax

M−1 )(j− 1)

SSP cj = cmin + (cmax − cmin)sin
(

(j−1)π
2(M−1)

)
CR cj =

(
c3minc

2
max

j−1
M−1

) 1
3

SR cj =
(
c3minc

2
max

j−1
M−1

) 1
2

HSP


SSPj , j = 3k + 1,
DLSPj , j = 3k + 2, k = 0, ..., ⌊M

3 ⌋
ESPj , j = 3k + 3

Definition 2.1. The αth order Caputo fractional derivative of function f(x) is defined
as follows

Dα
Cf(x) =

{ 1
Γ(k−α)

∫ x

0
(x− ξ)k−1−αf (k)(ξ)dξ, k − 1 < α < k, x > 0,

f (k)(x), α = k ∈ N.
(2.1)

Definition 2.2. The αth order Riemann-Liouville fractional derivative of function
f(x) is defined as

Dα
RLf(x) =

{
1

Γ(k−α)
dk

dxk

∫ x

0
(x− ξ)k−1−αf(ξ)dξ, k − 1 < α < k, x > 0,

f (k)(x), α = k ∈ N.
(2.2)

Theorem 2.3. The Caputo and Riemann-Liouville fractional derivatives are linear
operators, i.e. [23]

Dα
C

(
λf(x) + g(x)

)
= λDα

Cf(x) +Dα
Cg(x),

and

Dα
RL

(
λf(x) + g(x)

)
= λDα

RLf(x) +Dα
RLg(x),

where λ ∈ C.

Theorem 2.4. For the Caputo and Riemann-Liouville fractional derivatives, we have
[23]

Dα
CK = 0, (2.3)

and

Dα
RLK =

K

Γ(1− α)
x−α ̸= 0, (2.4)
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where K is constant.

Theorem 2.5. The Caputo and Riemann-Liouville fractional derivatives of the power
functions satisfiy [23]

Dα
Cx

p =

{
Γ(p+1)

Γ(p+1−α)x
p−α, n− 1 < α < n, p > n− 1, p ∈ R,

0, n− 1 < α < n, p ≤ n− 1, p ∈ N,
(2.5)

and

Dα
RLx

p =
Γ(p+ 1)

Γ(p+ 1− α)
xp−α, n− 1 < α < n, p > −1, p ∈ R. (2.6)

Theorem 2.6. (Leibniz Rule) [23]
Let α ∈ R, n− 1 < α < n ∈ N and L > 0. If f(x) and g(x) and all its derivatives are
continuous in [0, L], then the following hold

Dα
C

(
f(x)g(x)

)
=

∞∑
k=0

(
α

k

)(
Dα−k

RL f(x)
)
Dkg(x)

−
n−1∑
k=0

xk−α

Γ(k + 1− α)

((
f(x)g(x)

)(k)
(0)

)
,

(2.7)

Dα
RL

(
f(x)g(x)

)
=

∞∑
k=0

(
α

k

)(
Dα−k

RL f(x)
)
Dkg(x). (2.8)

2.2. Newton Iteration Method. Consider the nonlinear system of equation [1]

F (X) = 0, (2.9)

where F (X) =
(
F1(X), ..., Fn(X)

)T
, F : D → Rn, D convex subset of Rn, X ∈ Rn,

and Fi : D → R is continuously differentiable in an open neighborhood D ⊆ Rn. For
any initial vector X0 close to X∗, where X∗ is the exact solution of (2.9), Newton-
Raphson method generates the sequence of vectors {Xk}∞k=0 by using the following
iterative scheme:

• Set an initial guess X0.

• Compute Xk+1 = Xk −
(
J(Xk)

)−1

F (Xk), k = 0, 1, 2, ...,

where J(X) is the Jacobian matrix of F (X).

3. The Caputo and Riemann-Liouville fractional derivatives of RBFs

In this section, we compute the Caputo and Riemann-Liouville fractional deriva-
tives of the Gaussian (GS) and quadric RBFs.
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3.1. Fractional derivatives of GS-RBFs. The Taylor series expansion of function
GS about the point x = xj is as

e−c(x−xj)
2

=
∞∑

n=0

(−c)n

n!
(x− xj)

2n =
∞∑

n=0

(−c)n

n!

2n∑
k=0

(
2n

k

)
(−1)kx2n−k

j xk.

(3.1)

So,

Dβ
Ce

−c(x−xj)
2

=
∞∑

n=0

(−c)n

n!

2n∑
k=0

(
2n

k

)
(−1)kx2n−k

j Dβ
Cx

k.

By the above equation and Eq. (2.5), the Caputo fractional derivative of function GS
is obtained as

Dβ
Ce

−c(x−xj)
2

=
∞∑

n=1

(−c)n

n!

2n∑
k=n′

(
2n

k

)
(−1)k x2n−k

j

Γ(k + 1)

Γ(k + 1− β)
xk−β , (3.2)

where n′ = [Re(β)] + 1.
Similarly, by Eqs. (2.6) and (3.1), we can write

Dβ
RLe

−c(x−xj)
2

=
∞∑

n=0

(−c)n

n!

2n∑
k=0

(
2n

k

)
(−1)kx2n−k

j

Γ(k + 1)

Γ(k + 1− β)
xk−β . (3.3)

3.2. Fractional derivatives of the quadric functions. Generally, we consider the
quadric functions as

ϕ(r) = (1 + c2r2)µ,

where µ = −1, − 1
2 and 1

2 , give IQ, IMQ and MQ functions, respectively.
The binomial series expansion of quadric functions is as(

1 + c2(x− xj)
2
)µ

= 1 +

∞∑
n=1

(
µ

n

)(
c(x− xj)

)2n
= 1 +

∞∑
n=1

(
µ

n

)
c2n

2n∑
k=0

(
2n

k

)
(−1)k x2n−k

j xk, (3.4)

for −1 < c(x− xj) < 1. So,

Dβ
C

(
1 + c2(x− xj)

2
)µ

=

Dβ
C1 +

∞∑
n=1

(
µ

n

)
c2n

2n∑
k=0

(
2n

k

)
(−1)kx2n−k

j Dβ
Cx

k. (3.5)
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By Eqs. (2.3), (2.5) and (3.5), the Caputo fractional derivative of the quadric func-
tions is obtained as

Dβ
C

(
1 + c2(x− xj)

2
)µ

=

∞∑
n=1

(
µ

n

)
c2n

2n∑
k=n′

(
2n

k

)
(−1)kx2n−k

j

Γ(k + 1)

Γ(k + 1− β)
xk−β , (3.6)

where n′ = [Re(β)] + 1.
Similarly by Eqs. (2.4), (2.6) and (3.4), the Riemann-Liouville fractional derivative
of the quadric functions is given as

Dβ
RL

(
1 + c2(x− xj)

2
)µ

=
1

Γ(1− β)
x−β+

∞∑
n=1

(
µ

n

)
c2n

2n∑
k=0

(
2n

k

)
(−1)kx2n−k

j

Γ(k + 1)

Γ(k + 1− β)
xk−β . (3.7)

4. Method of solution

First, we discretize equation (1.1) in the time direction, as

∂αun+1

∂tα
=

[
− ∂β

∂xβ
A
(
x, tn+1, un+1

)
+

∂2β

∂x2β
B
(
x, tn+1, un+1

)]
un+1

+ fn+1, (4.1)

where un+1 = u(x, tn+1), fn+1 = f(x, tn+1), tn = nτ , n = 0, 1, ..., N , the time step

τ , and the time length Nτ . The values of ∂αun+1

∂tα for n = 0, n = 1 and n ≥ 2 are
obtained as follows: [6]

∂αu1

∂tα
= µa0(u

1 − u0) +O(τ2−α), (4.2)

∂αu2

∂tα
= µ

[
(b0 − a1)u

0 + (a1 − a0 − 2b0)u
1 + (a0 + b0)u

2

]
+O(τ3−α), (4.3)

∂αun+1

∂tα
= µ

[
(bn−1 − an)u

0 + (an − an−1 − 2bn−1)u
1 + (an−1 + bn−1)

u2 +
n∑

k=3

(
w1,n−k+1u

k + w2,n−k+1u
k−1 + w3,n−k+1u

k−2 + w4,n−k+1

uk−3
)
+ w1,0u

n+1 + w2,0u
n + w3,0u

n−1 + w4,0u
n−2

]
+O(τ4−α), (4.4)
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in which

µ =
τ−α

Γ(2− α)
,

ai = (i+ 1)1−α − i1−α,

bi =
(i+ 1)2−α − i2−α

2− α
− (i+ 1)1−α + i1−α

2
,

w1,n−k+1 =
1

6

[
2(n− k + 2)1−α − 11(n− k + 1)1−α

]
− 1

2− α

[
2(n− k + 1)2−α − (n− k + 2)2−α

]
− 1

(2− α)(3− α)

[
(n− k + 1)3−α − (n− k + 2)3−α

]
,

w2,n−k+1 =
1

2

[
6(n− k + 1)1−α + (n− k + 2)1−α

]
+

1

2− α

[
5(n− k + 1)2−α − 2(n− k + 2)2−α

]
+

3

(2− α)(3− α)

[
(n− k + 1)3−α − (n− k + 2)3−α

]
,

w3,n−k+1 =− 1

2

[
3(n− k + 1)1−α + 2(n− k + 2)1−α

]
− 1

2− α

[
4(n− k + 1)2−α − (n− k + 2)2−α

]
− 3

(2− α)(3− α)

[
(n− k + 1)3−α − (n− k + 2)3−α

]
,

and

w4,n−k+1 =
1

6

[
2(n− k + 1)1−α + (n− k + 2)1−α

]
+

1

2− α
(n− k + 1)2−α

+
1

(2− α)(3− α)

[
(n− k + 1)3−α − (n− k + 2)3−α

]
.

By Eqs. (4.1)-(4.4), the following finite differences equations are obtained:

µu1 +Dβ
γ (Au)

1 −D2β
γ (Bu)1 − µu0 − f1 = 0, (4.5)

µ(a0 + b0)u
2 +Dβ

γ (Au)
2 −D2β

γ (Bu)2+

µ
[
(b0 − a1)u

0 + (a1 − a0 − 2b0)u
1
]
− f2 = 0, (4.6)
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and

µw1,0u
n+1 +Dβ

γ (Au)
n+1 −D2β

γ (Bu)n+1 + µ

[
(bn−1 − an)u

0+

(an − an−1 − 2bn−1)u
1 + (an−1 + bn−1)u

2 +

n∑
k=3

(
w1,n−k+1u

k+

w2,n−k+1u
k−1 + w3,n−k+1u

k−2 + w4,n−k+1u
k−3
)
+ w2,0u

n + w3,0u
n−1

+ w4,0u
n−2

]
− fn+1 = 0, n = 2, 3, ..., (4.7)

where γ = C or RL.
Now, using the radial basis functions, we consider the solution u(x, tn+1) as follows

un+1(x) =

M∑
j=1

λn+1
j ϕ(∥x− xj∥), n = 0, 1, 2, ..., (4.8)

where λn+1
j , j = 1, ...,M is unknown.

To construct the approximations for u1(x), first we substitute (4.8) in (1.3), (1.4)
and (4.5). Then, we collocate the resulted equations. For suitable collocation points,
we choose the centers, xi, i = 1, ...,M (xi = (i − 1)∆x, ∆x = 1

M−1 ), as collocation
points. Thus, a nonlinear system of M equations in M unknowns is obtained as
follows:

F̃ 1
1 =

M∑
j=1

λ1
jϕ(∥x1 − xj∥)− h1(t

1) = 0,

F̃ 1
i = µ

M∑
j=1

λ1
jϕ(∥xi − xj∥)+

Dβ
γ

[
A
(
xi, t

1,
M∑
j=1

λ1
jϕ(∥xi − xj∥)

)( M∑
j=1

λ1
jϕ(∥xi − xj∥)

)]

−D2β
γ

[
B
(
xi, t

1,
M∑
j=1

λ1
jϕ(∥xi − xj∥)

)( M∑
j=1

λ1
jϕ(∥xi − xj∥)

)]
−µu0

i − f1
i = 0, i = 2, ...,M − 1,

F̃ 1
M =

M∑
j=1

λ1
jϕ(∥xM − xj∥)− h2(t

1) = 0,

(4.9)

where h1 and h2 are respectively the boundary conditions (1.3) and (1.4). Also,
the fractional derivatives for Caputo case are obtained by Eq. (2.7) together with
Eq. (3.2) (for GS-RBF) or Eq. (3.6) (for quadric-RBFs) and similarly, for Riemann-
Liouville case by Eqs. (2.8), (3.3), and (3.7). By solving the system (4.9), λ1

j , j =

1, . . . ,M is computed. Similarly, u2(x) is obtained by substituting (4.8) in (1.3),
(1.4) and (4.6), and using the collocation method with the same collocation points
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and solving the nonlinear system

F̃ 2
1 =

M∑
j=1

λ2
jϕ(∥x1 − xj∥)− h1(t

2) = 0,

F̃ 2
i = µ(a0 + b0)

M∑
j=1

λ2
jϕ(∥xi − xj∥)+

Dβ
γ

[
A
(
xi, t

2,
M∑
j=1

λ2
jϕ(∥xi − xj∥)

)( M∑
j=1

λ2
jϕ(∥xi − xj∥)

)]
−

D2β
γ

[
B
(
xi, t

2,
M∑
j=1

λ2
jϕ(∥xi − xj∥)

)( M∑
j=1

λ2
jϕ(∥xi − xj∥)

)]
+

µ
[
(b0 − a1)u

0
i + (a1 − a0 − 2b0)u

1
i

]
− f2

i = 0, i = 2, . . . ,M − 1,

F̃ 2
M =

M∑
j=1

λ2
jϕ(∥xM − xj∥)− h2(t

2) = 0.

(4.10)

Inductively, to obtain un+1(x), n = 2, 3, 4, . . ., first Eq. (4.7) is substituted in Eqs.
(1.3), (1.4) and (4.8), and then the same technique is applied. These lead to the
following nonlinear system

F̃n+1
1 =

M∑
j=1

λn+1
j ϕ(∥x1 − xj∥)− h1(t

n+1) = 0,

F̃n+1
i = µw1,0

M∑
j=1

λn+1
j ϕ(∥xi − xj∥)+

Dβ
γ

[
A
(
xi, t

n+1,
M∑
j=1

λn+1
j ϕ(∥xi − xj∥)

)( M∑
j=1

λn+1
j ϕ(∥xi − xj∥)

)]
−

D2β
γ

[
B
(
xi, t

n+1,
M∑
j=1

λn+1
j ϕ(∥xi − xj∥)

)( M∑
j=1

λn+1
j ϕ(∥xi − xj∥)

)]
+

µ

[
(bn−1 − an)u

0
i + (an − an−1 − 2bn−1)u

1
i + (an−1 + bn−1)u

2
i+

n∑
k=3

(
w1,n−k+1u

k
i + w2,n−k+1u

k−1
i + w3,n−k+1u

k−2
i + w4,n−k+1u

k−3
i

)
+w2,0u

n
i + w3,0u

n−1
i + w4,0u

n−2
i

]
− fn+1

i = 0, i = 2, ...,M − 1,

F̃n+1
M =

M∑
j=1

λn+1
j ϕ(∥xM − xj∥)− h2(t

n+1) = 0.

(4.11)

We solve the resulted nonlinear systems by utilizing the Newton iteration method
presented in Section 2.2, as follows: In (n+1)th, n = 0, 1, 2, ... time step, the unknown

vector, Λn+1 =
[
λn+1
1 , λn+1

2 , ..., λn+1
M

]T
, is given by

Λn+1
k+1 = Λn+1

k −
(
Jn+1(Λn+1

k )

)−1

F̃n+1(Λn+1
k ), k = 0, 1, 2, ..., (4.12)
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with a suitable choice of Λn+1
0 . In (4.12), F̃n+1 =

[
F̃n+1
1 , F̃n+1

2 , ..., F̃n+1
M

]T
is a

function of Λn+1 which is given by (4.9), (4.11) and (??) for n = 0, n = 1 and n ≥ 2,
respectively.
By substituting the values of λn+1

j , j = 1, 2, ...,M obtained by (4.12) in Eq. (4.8), the

values of unknown function un+1(x), n = 0, 1, 2, ... are computed.

5. Numerical Examples

In this section, we solve three examples by the proposed method. The space-
fractional derivative, in the first and second examples, is of Caputo type and in the
third, is of Riemann-Liouville type. We use, δ = 100 floating point arithmetics in
our computations. Also, we solve the resulted nonlinear systems via corresponding
Newton iteration method with the stop condition

∥Λk+1 − Λk∥∞
∥Λk+1∥∞

< 10−3.

We calculate the errors and the experimental convergence order (C − order) by the
following formulas

E∞ =
∥∥∥uexact(x, t

N )− uapprox(x, t
N )
∥∥∥
∞

= max
1≤i≤M

∣∣∣uexact(xi, t
N )− uapprox(xi, t

N )
∣∣∣,

E2 =

√√√√ M∑
i=1

(
uexact(xi, tN )− uapprox(xi, tN )

)2
,

RMSE =

√√√√ 1

M

M∑
i=1

(
uexact(xi, tN )− uapprox(xi, tN )

)2
,

C − order = log2

(
E∞(∆x, 2τ)

E∞(∆x, τ)

)
.

In practice, in the Eqs. (3.2), (3.3), (3.6) and (3.7) we have to put a positive integer
”q” instead of ”∞”. We perform our computations with q=30 and by using Maple
16 software. Also, in Eqs. (2.7) and (2.8), we put q′=3 instead of ”∞”.

5.1. Caputo case. In this section, we will solve two examples in which the fractional
space derivatives are of the Caputo type.

5.1.1. Example 1. Consider the nonlinear time- and space-FFPE (1.1) with

A
(
x, t, u(x, t)

)
=

7

2
u(x, t) and B

(
x, t, u(x, t)

)
= u(x, t) as

∂αu(x, t)

∂tα
=

[
− ∂β

∂xβ

(7
2
u(x, t)

)
+

∂2β

∂x2β

(
u(x, t)

)]
u(x, t) + f(x, t),
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with the initial and boundary conditions,

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = t5, t ≥ 0,

u(1, t) = 2t5, t ≥ 0,

and

f(x, t) =
120

Γ(6− α)
(x2 + 1)t5−α + t10

[ 84

Γ(5− β)
x4−β +

14

Γ(3− β)
x2−β

− 24

Γ(5− 2β)
x4−2β − 4

Γ(3− 2β)
x2−2β

]
.

The exact solution of this problem is u(x, t) = t5(x2 + 1).
We have solved the problem by the present method using GS-RBFs, IQ-RBFs, MQ-
RBFs and IMQ-RBFs. Table 3 depicts the E∞ errors and the experimental conver-
gence orders (C − orders) obtained by our method with M = 16 and DLSP strategy
for the case α = 0.3 and β = 0.7. Table 3 shows that the C − order is approximately
4− α and also as τ becomes smaller, the smaller errors are obtained. Moreover, the
numerical approximations obtained by large number of iterations are very accurate
and thus the method has a good stability.
In Table 4, we report the E∞, E2 and RMSE errors obtained by IQ-RBFs and HSP
strategy with cmin = 0.4 and cmax = 0.5 for various values of α. Table 4 shows that
as α becomes larger, the larger errors are obtained.
Table 5 presents the errors resulted by GS-RBFs and the SSP strategy for different
values of β.
Table 6 depicts the errors and κ∞(A) resulted by GS-RBFs and EPS strategy for
various values of M . Table 6 shows that as the number of RBFs becomes larger the
smaller errors are obtained, while the condition number of A becomes larger.
In Table 7, we list the E∞ and RMSE errors and κ2(A) resulted by IMQ-RBFs for
several different strategies. Table 15 shows that for cmin = 0.2 and cmax = 0.4, EPS
strategy gives the least error, although HSP strategy gives the least condition number.
We plot the approximate solution and the absolute error function resulted by IQ-RBFs
with cmin = 0.35, cmax = 0.45 and ILSP strategy in Fig. 1.

Table 3. The E∞ and C − order resulted by IMQ-RBFs and MQ-
RBFs with M = 16 at t = 1 in Example 1 for α = 0.3, β = 0.7 and
various values of τ .

IMQ (cmin = 0.3, cmax = 0.4) MQ(cmin = 0.35, cmax = 0.45)

τ E∞ C − order E∞ C − order
0.05 5.86652× 10−6 − 5.86735× 10−6 −
0.025 4.88206× 10−7 3.59 4.88278× 10−7 3.59
0.0125 3.95547× 10−8 3.63 3.95635× 10−8 3.63
0.00625 3.14875× 10−9 3.65 3.15241× 10−9 3.65
0.003125 2.42661× 10−10 3.70 2.45035× 10−10 3.69
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Table 4. The E∞, E2 and RMSE errors using IQ-RBFs with M =
19, cmin = 0.4 and cmax = 0.5 in Example 1 for different values of α,
β = 0.65 and τ = 0.0125 at t = 1.

α E∞ E2 RMSE
0.1 5.20578× 10−9 1.60702× 10−8 3.68676× 10−9

0.3 3.93740× 10−8 1.21321× 10−7 2.78330× 10−8

0.5 1.79679× 10−7 5.52454× 10−7 1.26742× 10−7

0.7 7.31865× 10−7 2.24455× 10−6 5.14936× 10−7

0.9 2.90753× 10−6 8.88856× 10−6 2.03918× 10−6

Table 5. The E∞, E2 and RMSE errors using GS-RBFs with M =
21, cmin = 1, cmax = 4 and τ = 0.02 at t = 1 in Example 1 for
α = 0.35 and various values of β.

β E∞ E2 RMSE
0.5 2.24477× 10−7 6.87836× 10−7 1.50098× 10−7

0.6 3.05273× 10−7 9.82755× 10−7 2.14455× 10−7

0.7 3.16133× 10−7 1.02708× 10−6 2.24128× 10−7

0.8 2.97399× 10−7 9.65551× 10−7 2.10701× 10−7

0.9 2.66172× 10−7 8.64019× 10−7 1.88544× 10−7

1 2.33202× 10−7 7.53738× 10−7 1.64479× 10−7

Table 6. The errors and condition number of matrix A resulted by
GS-RBFs with cmin = 1 and cmax = 4 at t = 1 in Example 1 for
τ = 0.005, α = 0.15 and β = 0.75.

M E∞ E2 RMSE κ∞(A)
9 2.0410755× 10−3 4.6131598× 10−3 1.5377199× 10−3 4.8254× 108

13 4.7843795× 10−5 1.2844050× 10−4 3.5622986× 10−5 2.0748× 1015

17 1.1324385× 10−7 3.5413787× 10−7 8.5891050× 10−8 5.7438× 1021

21 5.4410809× 10−10 1.8755918× 10−9 4.0928769× 10−10 1.0987× 1029

5.1.2. Example 2. Consider [21, 24, 25]

∂αu(x, t)

∂tα
=

[
− ∂β

∂xβ

(4u(x, t)
x

− x

3

)
+

∂2β

∂x2β

(
u(x, t)

)]
u(x, t),

with the initial and boundary conditions,

u(x, 0) = x2, 0 ≤ x ≤ 1,

u(0, t) = 0, t ≥ 0,

u(1, t) = et, t ≥ 0.

We apply the present method and solve the problem for the case α = β = 1. In this
case, the exact solution is u(x, t) = x2et. The solution of the above problem has been
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Table 7. The errors and condition number of matrix A using IMQ-
RBFs, M = 13, cmin = 0.2, cmax = 0.4, α = 0.5, β = 0.6 and
τ = 0.01 at t = 1 in Example 1 for some different choices of the
shape parameter.

Shape parameter E∞ RMSE κ2(A)
HSP 8.275332× 10−8 5.769436× 10−8 6.752× 1018

SSP 8.215845× 10−8 5.715384× 10−8 5.935× 1020

DLSP 8.326350× 10−8 5.813326× 10−8 2.909× 1021

ILSP 8.254839× 10−8 5.751901× 10−8 2.909× 1021

EPS 8.015564× 10−8 5.546930× 10−8 2.214× 1022

CR 8.270443× 10−8 5.765299× 10−8 4.806× 1028

SR 8.271487× 10−8 5.766176× 10−8 1.224× 1037

0.3 8.282991× 10−8 5.776044× 10−8 7.249× 1024

0.4 8.291937× 10−8 5.788042× 10−8 8.434× 1021

0.5 8.367091× 10−8 5.905132× 10−8 4.802× 1019

Figure 1. Plot of approximate solution (left) and plot of the abso-
lute error function (right) obtained by IQ-RBFs with M = 21 and
τ = 0.005 at t = 1 in Example 1 for α = 0.2 and β = 0.75.

approximated by Adomian method (ADM) in [21], by q-homotopy analysis method (q-
HAM) in [24] and by both fractional reduced differential transform method (FRDTM)
and fractional variational iteration method (FVIM) in [25]. However, their methods
differ from our method and we can use this example as a basis for comparison. Table
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8 presents the results of our method with M = 5 MQ-RBFs, c = 0.15 and τ = 0.02,
and the methods proposed in [21, 24, 25].
Tables 9 and 10 depict our results for different values of τ and various values of M ,
respectively. Table 9 shows that the C − order is approximately equal to 3, that is
4− α for α = 1.

Table 8. The comparison of numerical solutions obtained by the
methods in [21, 24, 25] and the present method with the exact solu-
tion for α = 1 and β = 1, in Example 2.

x t ADM [21] q- HATM [24] FRDTM [25] FVIM [25] MQ (M=5) Exact

0.2
0.25 0.076333 0.0762 0.0762 0.0761 0.076346 0.076338
0.50 0.305333 0.3050 0.3050 0.3050 0.305361 0.305351
0.75 0.687000 0.6863 0.6863 0.6860 0.687049 0.687039
1 1.221333 1.2200 1.2200 1.2190 1.221403 1.221403

0.4
0.25 0.093167 0.0925 0.0925 0.0924 0.093242 0.093239
0.50 0.372667 0.3700 0.3700 0.3670 0.372960 0.372956
0.75 0.838500 0.8325 0.8325 0.8319 0.839159 0.839151
1 1.490667 1.4800 1.4800 1.4770 1.491825 1.491825

Table 9. The E∞ error and C − order for different values of τ re-
sulted by MQ-RBFs and GS-RBFs with M = 21 at t = 1 in Example
2 for α = 1 and β = 1.

MQ(c = 0.45) GS (c = 1)

τ E∞ C − order E∞ C − order
0.04 4.814008× 10−7 − 4.813946× 10−7 −
0.02 6.218827× 10−8 2.95 6.218675× 10−8 2.95
0.01 8.021933× 10−9 2.95 8.021555× 10−9 2.95
0.005 1.048054× 10−9 2.94 1.047949× 10−9 2.94
0.0025 1.419136× 10−10 2.88 1.418750× 10−10 2.88

5.2. Reimann-Liouville case. In this section, we obtain the numerical solutions of
a time- and space-FFPE with Riemann-Liouville space fractional derivative.

5.2.1. Example 3. Consider

∂αu(x, t)

∂tα
=

[
− ∂β

∂xβ

(1
6
u(x, t)

)
+

∂2β

∂x2β

( 1

12
u(x, t)

)]
u(x, t) + f(x, t),
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Table 10. The errors and condition number of matrix A for various
values of M with IMQ-RBFs, c = 0.65 and τ = 0.0125 at t = 1 in
Example 2 for the case α = 1 and β = 1.

M E∞ E2 RMSE κ2(A)
6 4.10836× 10−3 4.96741× 10−3 2.02794× 10−3 6.3036× 106

9 1.23098× 10−4 1.67750× 10−4 5.59167× 10−5 1.5984× 1011

12 6.13871× 10−6 9.75654× 10−6 2.81647× 10−6 4.2237× 1015

15 1.73399× 10−7 3.23292× 10−7 8.34736× 10−8 1.1170× 1020

18 1.93304× 10−8 5.82034× 10−8 1.37187× 10−8 2.9897× 1024

21 1.55920× 10−8 4.87087× 10−8 1.06291× 10−8 7.9815× 1028

with the initial and boundary conditions,

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, t ≥ 0,

u(1, t) = t4+α, t ≥ 0,

and

f(x, t) =
Γ(5 + α)

Γ(5)
x2t4 +

[ 4

Γ(5− β)
x4−β − 2

Γ(5− 2β)
x4−2β

]
t8+2α.

The exact solution is u(x, t) = t4+αx2.
In Table 11, we report the E∞ errors and C−order of the method using IMQ and GS-
RBFs with SSP strategy for different values of τ . Table 11 shows that the C − order
is approximately 4− α and, furthermore, the method has a good stability.
Table 12 presents the E∞, E2 and RMSE errors obtained by our method using IQ-
RBFs and HSP strategy for various values of β. Table 12 shows that as β becomes
larger, the smaller errors are obtained.
Table 13 depicts the E∞, E2 and RMSE errors resulted by MQ-RBFs and EPS
strategy, for different values of α. Table 13 shows that as α becomes smaller, the
more accurate approximations are obtained.
In Table 14, we list the E∞, E2, RMSE errors and κ2(A) for different values of
M . Table 14 shows that as the number of RBFs becomes larger the more accurate
approximations are obtained, while the condition number of A becomes larger.
Table 15 presents the E∞, E2, RMSE errors and κ∞(A) resulted by IQ-RBFs for
several different strategies. As Table 15 shows, for cmin = 0.4 and cmax = 0.5, the
least errors are obtained by EPS strategy while the least condition number is given
by HSP strategy.
We plot the approximate solution and the absolute error function resulted by IMQ-
RBFs with cmin = 0.3, cmax = 0.5 and SSP strategy in Fig. 2.
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Table 11. The E∞ error and C−order resulted by IMQ-RBFs and
GS-RBFs with M = 21 and different values of τ for α = 0.2 and
β = 0.65 at t = 1 in Example 3.

IMQ (cmin = 0.3, cmax = 0.5) GS (cmin = 1, cmax = 2)

τ E∞ C − order E∞ C − order
0.04 2.8019738× 10−6 − 2.8019737× 10−6 −
0.02 2.1311712× 10−7 3.72 2.1311685× 10−7 3.72
0.01 1.6019491× 10−8 3.73 1.6019194× 10−8 3.73
0.005 1.1938904× 10−9 3.75 1.1935909× 10−9 3.75
0.0025 8.8402097× 10−11 3.76 8.8102409× 10−11 3.76
0.00125 6.5129368× 10−12 3.76 6.2132373× 10−12 3.83

Table 12. The E∞, E2 and RMSE errors using IQ-RBFs with M =
16, cmin = 0.4, cmax = 0.6 and τ = 0.02 for α = 0.3 and various
values of β at t = 1 in Example 3.

β E∞ E2 RMSE
0.5 7.08412× 10−7 1.52831× 10−6 3.82078× 10−7

0.6 6.18446× 10−7 1.38747× 10−6 3.46867× 10−7

0.7 5.24731× 10−7 1.23437× 10−6 3.08591× 10−7

0.8 4.36537× 10−7 1.07849× 10−6 2.69623× 10−7

0.9 3.58089× 10−7 9.26213× 10−7 2.31553× 10−7

1 2.92288× 10−7 7.84399× 10−7 1.96100× 10−7

Table 13. The E∞, E2 and RMSE errors using MQ-RBFs with
M = 21, cmin = 0.2, cmax = 0.5 and τ = 0.01 for various values of α
and β = 0.7 at t = 1 in Example 3.

α E∞ E2 RMSE
0.1 3.87806× 10−9 1.09294× 10−8 2.38499× 10−9

0.3 4.16981× 10−8 1.13520× 10−7 2.47721× 10−8

0.5 2.48802× 10−7 6.51157× 10−7 1.42094× 10−7

0.7 1.20715× 10−6 3.02197× 10−6 6.59447× 10−7

0.9 5.04103× 10−6 1.22246× 10−5 2.66762× 10−6

6. Conclusion

A new method for solving FFPE using RBFs is proposed. The equation is solved
for 0 ≤ x ≤ 1. So, for the quadric RBFs, the shape parameter c must be selected in
the interval [0, 1]. Several well-known strategies introduced in the literature are used
to find the suitable shape parameter. The Caputo and Riemann-Liouville fractional
derivatives of RBFs are obtained to approximate the spatial derivatives of the un-
known function. For discretizing on time variable, the high order formulas introduced
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Table 14. The errors and condition number of matrix A using GS-
RBFs, cmin = 1.5, cmax = 3 and τ = 0.01 at t = 1 in Example 3 for
α = 0.15 and β = 0.55 .

M E∞ E2 RMSE κ2(A)
7 3.33134× 10−4 3.34419× 10−4 1.26399× 10−4 1.1371× 106

10 1.99662× 10−4 2.03376× 10−4 6.43132× 10−5 8.0484× 1010

13 5.29971× 10−6 5.62392× 10−6 1.55980× 10−6 4.6552× 1014

15 4.50182× 10−7 4.89021× 10−7 1.26265× 10−7 7.2938× 1018

18 1.90638× 10−8 3.49428× 10−8 8.23611× 10−9 1.5893× 1024

21 1.03165× 10−8 2.67146× 10−8 5.82960× 10−9 5.2082× 1029

Table 15. The errors and condition number of matrix A resulted
by IQ-RBFs with M = 16, cmin = 0.4 and cmax = 0.5 at t = 1 in
Example 3 for τ = 0.0125, α = 0.45 and β = 0.7.

Shape parameter E∞ E2 RMSE κ∞(A)
HSP 3.563947× 10−7 8.191995× 10−7 2.047999× 10−7 1.1321× 1022

SSP 3.565245× 10−7 8.199086× 10−7 2.049771× 10−7 1.5952× 1023

DLSP 3.563872× 10−7 8.191643× 10−7 2.047911× 10−7 5.8925× 1024

ILSP 3.563901× 10−7 8.191866× 10−7 2.047966× 10−7 5.8925× 1024

EPS 3.563551× 10−7 8.189983× 10−7 2.047496× 10−7 1.0917× 1025

CR 3.563954× 10−7 8.191915× 10−7 2.047979× 10−7 8.3336× 1028

SR 3.563954× 10−7 8.192106× 10−7 2.048026× 10−7 1.5524× 1035

0.3 3.563945× 10−7 8.192008× 10−7 2.048002× 10−7 3.8404× 1030

0.4 3.564091× 10−7 8.192834× 10−7 2.048208× 10−7 8.1911× 1026

0.45 3.564623× 10−7 8.195701× 10−7 2.048925× 10−7 2.6610× 1025

0.5 3.566473× 10−7 8.205630× 10−7 2.051407× 10−7 1.2694× 1024

0.6 3.587414× 10−7 8.320082× 10−7 2.080021× 10−7 6.9984× 1021

in [5] are applied. At each time step, by using a collocation method, the compu-
tations of FFPE are reduced to a system of nonlinear algebraic equations. These
systems can be solved by the Newton iteration method. Our method is relatively
simple and computationally attractive, although selecting a proper shape parameter
c as well as choosing a suitable initial guess Λn+1

0 may be somewhat difficult. The
present method provides a closed form approximate solution, in each time step. The
numerical examples show that the method has a good efficiency, accuracy and stabil-
ity. Also, the experimental order of convergence for the new method is approximately
4− α where α is the order of time derivative.
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Figure 2. Plot of the approximate solution (left) and plot of the
absolute error function (right) obtained by IMQ-RBFs with M = 16
and τ = 0.00625 at t = 1 in Example 3 for α = 0.35 and β = 0.6.
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