In this study, the existence of positive solutions is considered for second-order boundary value problems on any time scales even in the case when y ≡ 0 may also be a solution.
[1] R. P. Agarwal and D. O’Regan, Second and Higher Order Boundary Value Problems of Non- singular Type, Bull. Belg. Math. Soc., 7 (2000), 43-52.
[2] L. E. Bobisud and D. O’Regan, Existence of Positive Solutions for Singular Ordinary Differ- ential Equations with Nonlinear Boundary Conditions, Proc. Amer. Math. Soc., 124 (1996), 2081-2087.
[3] M. Bohner and A. Petterson, Advances in Dynamic Equations on Time Scales, Birkhauser, (2003), 358.
[4] P. W. Eloe and J. Henderson, Positive Solutions for Higher Order Ordinary Differential equa- tions, Electron J. Differential Equations, 3 (1995), 1-8.
[5] L. H. Erbe and H. Wang, On The Existence of Positive Solutions of Ordinary Differential Equations, Proc. Amer. Math. Soc., 120 (1994), 743-748.
[6] A. M. Fink, J. A. Gatica, and G. E. Hernandez, Eigenvalues of Generalized Gelfand Models, Nonlinear Anal., 20 (1993), 1453-1468.
[7] S. Hilger, Ein Mabkettenkalkul mit Anvendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universitat Wurzburg(1988).
[8] Xu, Jiafa, O’ Regan, and Donald, Positive Solutions for a Second Order Boundary Value Prob- lem on Time Scale, J. Appl. Math. Comput., 51(1-2) (2016), 127-144.
[9] D. O’Regan, Existance Theory for Nonlinear Ordinary Differantial Equations, Kluwer Academic Publishers, Dordrecht, (1997), 1-22.
[10] D. O’Regan, Theory of Singular Boundary Value Problems, World Scientific, Singapore (1994), 168.
[11] P. J. Y. Wong and R. P. Agarwal, On the Existence of Solutions of Singular Boundary Value Problems for Higher Order Difference Equations, Nonlinear Anal., 28 (1997), 277-287.
[12] X. L. Zhang and J. J. Fan, Positive Solutions to a Second Order Non-Linear Boundary Value Problem on Time Scales, Acta Anal. Func. Appl.,14(4) (2012), 370-376.
Eralp, B. and Topal, F. S. (2021). Second order boundary value problems of nonsingular type on time scales. Computational Methods for Differential Equations, 9(4), 1214-1222. doi: 10.22034/cmde.2020.24117.1294
MLA
Eralp, B. , and Topal, F. S. . "Second order boundary value problems of nonsingular type on time scales", Computational Methods for Differential Equations, 9, 4, 2021, 1214-1222. doi: 10.22034/cmde.2020.24117.1294
HARVARD
Eralp, B., Topal, F. S. (2021). 'Second order boundary value problems of nonsingular type on time scales', Computational Methods for Differential Equations, 9(4), pp. 1214-1222. doi: 10.22034/cmde.2020.24117.1294
CHICAGO
B. Eralp and F. S. Topal, "Second order boundary value problems of nonsingular type on time scales," Computational Methods for Differential Equations, 9 4 (2021): 1214-1222, doi: 10.22034/cmde.2020.24117.1294
VANCOUVER
Eralp, B., Topal, F. S. Second order boundary value problems of nonsingular type on time scales. Computational Methods for Differential Equations, 2021; 9(4): 1214-1222. doi: 10.22034/cmde.2020.24117.1294