Extending a new two-grid waveform relaxation on a spatial finite element discretization

Document Type : Research Paper


Faculty of Applied Mathematics, Shahrood University Of Technology, P.O. Box 3619995161 Shahrood, Iran.


In this work, a new two-grid method presented for the elliptic partial differential equations is generalized to the time-dependent linear parabolic partial differential equations. The new two-grid waveform relaxation method uses the numerical method of lines, replacing any spatial derivative by a discrete formula, obtained here by the finite element method. A convergence analysis in terms of the spectral radius of the corresponding two-grid waveform relaxation operator is also developed. Moreover, the efficiency of the presented method and its analysis are tested, applying the twodimensional heat equation.


  • [1]          N. S. Bakhvalov, On the convergence of a relaxation method with natural constraints on the elliptic operator, USSR Comput. Math. Math. Phys., 6 (1966), 101–135.
  • [2]          A. Brandt and O. E. Liven, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition, SIAM, 2011.
  • [3]          A. Brandt, Multi-level adaptive techniques (MLAT) for fast numerical solution to boundary value problem, Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, Springer, (1973), 82–89.
  • [4]          A. Brandt, Multilevel adaptive solution to boundary value problems, Math. Comp., 31 (1977), 333–390.
  • [5]          A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for automatic multi- grid solutions with application to geodetic computations, Report, Institute for Computational Studies, Fort Collins, CO, (1984), 257–284.
  • [6]          R. P. Fedorenko, A relaxation method for solving elliptic difference equations, USSR Comput. Math. Phys., 1 (1962), 1092–1096.
  • [7]          R. P. Fedorenko, The speed of convergence of one iterative process, USSR Comput. Math. Math. Phys., 4 (1964), 227–235.
  • [8]          W. Hackbusch, Multigrid Methods and Applications, Springer, Berlin, 1985.
  • [9]          J. Janssen and S. Vandewalle, Multigrid waveform relaxation of spatial finite element meshes: the continuous-time case, SIAM J. NUMER. ANAL., 33(2) (1996), 456–474.
  • [10]        J. Janssen and S. Vandewalle, Multigrid waveform relaxation on spatial finite element meshes: the discrete-time case, SIAM J. SCI. COMPUT., 17(1) (1996), 133–155.
  • [11]        S. B. G. Karakoc and M. Neilan, A C0 finite element method for the biharmonic problem without extrinsic penalization, NUMER. METH. PART. D. E., 30(4) (2014), 1254–1278.
  • [12]        C. Lubich and A. Ostermann, Multi-grid dynamic iteration for parabolic equations, BIT, 27 (1987), 216–234.
  • [13]        U. Miekkala and O. Nevanlinna, Convergence of dynamic iteration methods for initial value problems, SIAM j. Sci. Statist. Comput., 8 (1987), 459–482.
  • [14]        H. Moghaderi, M. Dehghan, and M. Hajarian, A fast and efficient two-grid method for solving d-dimensional poisson equations, Numer Algor., (2015), 1–55.
  • [15]        U. Trottenberg, C. Oosterlee, and A. Schuller, Multigrid, Academic press, 2000.
  • [16]        S. Vandewalle, Parallel multigrid waveform relaxation for parabolic problems, B. G. Teubner Stuttgart, 1993.