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Abstract In this work, a new two-grid method presented for the elliptic partial differential
equations is generalized to the time-dependent linear parabolic partial differential

equations. The new two-grid waveform relaxation method uses the numerical method
of lines, replacing any spatial derivative by a discrete formula, obtained here by the
finite element method. A convergence analysis in terms of the spectral radius of the
corresponding two-grid waveform relaxation operator is also developed. Moreover,

the efficiency of the presented method and its analysis are tested, applying the two-
dimensional heat equation.
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1. Introduction

The design of an efficient solver which reduce the computational cost by preserving
high convergence rate is one of the challenges on these decades for the numerical
simulation to the partial differential equations (PDE). To this purpose, multigrid
method is one of the most popular technique to accelerate the convergence of the
iterative methods to solve the system of equations. In [6, 7], Federenko presented
the first idea and algorithm of the two-grid method. After his work, many other
researchers worked on this subject. Convergence analysis, gain full multigrid (FMG),
nonlinear multigrid and algebraic multigrid (AMG) are achievements of these efforts
(see [1, 2, 3, 4, 5, 8, 11]). We have many signs of progress on the multigrid method
until now. One of the last work is subjected to a work presented by Moghaderi and
Dehghan in [14]. They presented a fast and efficient two-grid method for solving the
Poisson equation. Extending their idea for time-dependent equations is the aim of
our work.
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Let us consider as model problem the simplest time-dependent PDE, heat equation,
with homogeneous Dirichlet boundary conditions

Dtu(x, t)−∆u(x, t)) = f(x, t), x ∈ Ω, t > 0,

u(x, t) = 0, on ∂Ω, t > 0,

u(x, 0) = g(x), x ∈ Ω,

(1.1)

where Ω ⊂ R2, is a bounded domain with boundary ∂Ω. In order to establish the finite
element approximation of our problem, let Ωh be a triangulation of Ω, satisfying the
usual admissibility assumption, i.e. the intersections of two different elements is either
empty, a vertex, or a whole edge. Let Vh be the finite element space of continuous
piecewise linear functions associated with Ωh vanishing on the boundary ∂Ω. The
discrete approximation uh ∈ Vh solves the following problem

(Dtuh, vh) + a (uh, vh) = (f, vh), vh ∈ Vh,

where

(Dtuh, vh) =

∫
Ω

(Dtuh)vh dx, (f, vh) =

∫
Ω

fvh dx,

a (uh, vh) =

∫
Ω

∇uh · ∇vh dx.

Let {ϕ1, . . . , ϕN} be the nodal basis of Vh, i.e., ϕi(xj) = δij , with xj an interior node

of the mesh Ωh. The approximation uh =
∑N

i=1 ui(t)ϕi(x) is found by solving the
following set of equations,

(Dtuh, ϕj) + a (uh, ϕj) = (f, ϕj), for j = 1, 2, . . . , N.

We rewrite these equations in terms of the mass matrix B = {(ϕi, ϕj)} and the
stiffness matrix A = {a(ϕi, ϕj)}, in a more standard form, as a system of ordinary
differential equations (ODEs)

Bhu̇h(t) +Ahuh(t) = Fh(t), uh(0) = gh, t > 0, (1.2)

where uh(t) = [u1(t), u2(t), . . . , uN (t)]T ∈ RN and the coefficient matrices Ah, Bh ∈
RN×N and the right hand side Fh(t) = [(f, ϕ1), (f, ϕ2), . . . , (f, ϕN )]T ∈ RN are con-
sidered.

We have many choices to pick a suitable method for solving the obtained ODE
system (1.2). In general, we can divide all the well known methods into two classes:
time-marching approaches and time parallel techniques. The algorithm proposed here
is directly applied on the ODE problem (1.2) using the waveform relaxation method
(WR). The proposed waveform relaxation technique works parallel in time.

The waveform relaxation is essentially a continuous-in-time algorithm for solving
ordinary differential equations. Although utilizing semi discretization on the original
PDE, it can be practical for these types of equations, too. The WR method is based
on splitting matrices Ah and Bh as Bh =MBh

−NBh
and Ah =MAh

−NAh
, leading

to the following iteration

MBh
u̇
(ν)
h (t) +MAh

u
(ν)
h (t) = NBh

u̇
(ν−1)
h (t) +NAh

u
(ν−1)
h (t) + Fh(t), (1.3)



1150 N. HABIBI AND A. MESFOROUSH

where u
(ν)
h (0) = gh, for ν ≥ 1 and u

(ν)
h (t) indicates the approximation of u(t) at

iteration ν. It is natural to define u0
h(t) along the whole time interval equal to the

initial condition, i.e. u0
h(t) = gh, t > 0. Considering the decomposition of matrices

Ah and Bh as Ah = −LAh
+ DAh

− UAh
and Bh = −LBh

+ DBh
− UBh

, the the
Gauss-Seidel waveform relaxation splittings in (1.3) are as follows:

MAh
= −LAh

+DAh
NAh

= UAh
,

MBh
= −LBh

+DBh
NBh

= UBh
,

where LAh
and LBh

are strictly lower triangular matrices, DAh
and DBh

are diagonal
matrices, and UAh

and UBh
are strictly upper triangular matrices.

In [13] Miekkala and Nevanlinna showed that convergence of this method could be
slow. In [12] Lubich and Ostermann combined waveform relaxation by the multigrid
acceleration method and presented theoretical results. The mentioned works were
based on spatial finite difference discretization. The theoretical convergence analysis
extensions of their work to the spatial finite element discretization were the subject
of [9, 10]. They studied the convergence of the standard waveform relaxation by the
spectral radius of its operator which is of linear Volterra convolution type.

We use the classical [15] and new two-grid technique to accelerate the convergence
of the Gauss-Seidel waveform relaxation method. A classical multigrid acceleration
of this method was firstly studied by Lubich and Ostermann in [4] and developed in
[2], independently. In order to apply a classical geometric two-grid waveform relax-
ation procedure the coarsening applies only on the spatial domain and we consider a

hierarchy of two grids, defined as Ω2h ⊂ Ωh. We obtain a new iterate u
(ν)
h from the

former waveform u
(ν−1)
h in three steps: Pre-smoothing, coarse grid correction and post

smoothing. In Algorithm 1 we present the classical two-grid waveform relaxation al-
gorithm (TGW) depending on the defined Gauss-Seidel waveform relaxation method
as smoother and the rest of the operators involved in the multigrid procedure. We
consider standard coarsening for constructing the coarse meshes and discretization
coarse grid approximation (DCA) in coarser grids. Regarding intergrid transfer op-
erators, the interpolation operators are the nine point stencil operator corresponding
to the linear interpolation for the two dimensional problem. The restriction operators
are considered as the adjoint of the prolongation operators.

In Algorithm 1, using the Crank-Nicolson approach for time discretization we ob-
tain a space-time two-grid method with coarsening only in space. Thus, we have
time-line Gauss-Seidel waveform relaxation, with standard full weighting restriction
and bilinear interpolation in space for data transfer between the levels in the multigrid
hierarchy.

Now, we present our new two-grid waveform relaxation method (NTGW). This
method is based on the two-grid scheme presented by Algorithm 1. As before we
consider two nested grids Ω2h and Ωh, with Ω2h ⊂ Ωh and we obtain new iterate u(ν)

from the former one, u(ν−1).
Suppose the initial guess for solving equation (1.3) be of the form:

x̃(t) = x(ν1)(t) + wx̄(t),
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Algorithm 1 The classical two-grid waveform relaxation based on the

Gauss-Seidel smoother TGW (u
(ν)
h (t), Fh(t), ν1, ν2) = u

(ν+1)
h (t)

If we are on the coarsest grid, then solve the following equation by a direct
or fast solver

Bh0 u̇
ν+1
h0

(t) +Ah0u
ν+1
h0

(t) = Fh0(t).

Else
(Presmoothing) Perform ν1 steps of Gauss-Seidel waveform relaxation,

vνh(t) = Sν1 (uν
h(t)).

(Coarse grid correction)
Compute the defect
d̄νh(t) = Fh(t)−Bhv̇

ν
h(t)−Ahv

ν
h(t)

Restrict the defect
d̄ν2h(t) = rd̄νh(t)
Solve the following defect equation,
B2hė

ν
2h(t) +A2he

ν
2h(t) = d̄ν2h(t), eν2h(0) = 0

Interpolate the correction
eνh(t) = peν2h(t)
Correct the current approximation with the interpolation of the correction,
vν+1
h (t) = vνh(t) + eνh(t).

(Postsmoothing) Perform ν2 steps of Gauss-Seidel waveform relaxation,
uν+1
h (t) = Sν2

(
vν+1
h (t)

)
.

End If

considering x(ν1)(t) = Kν1x0(t) with x0(t) an initial guess and w ̸= 0 a real number
that we will identify it later, and Kν1 an iterative matrix of an iterative method,
considered here as Gauss-Seidel method, where ν1 is the number of iterations. x̄(t)
can be computed using two-grid waveform relaxation for solving the following initial
value problem

Bhu̇+Ahu =
1

w2
(fh −Bhẋ

(ν1) −Ahx
(ν1)).

Then we use the classical two-grid waveform relaxation on (1.2) by the initial guess
x̃. The algorithms of the new two-grid waveform relaxation scheme are presented in
the following.

Algorithm 2 The new two-grid waveform relaxation

NTGW (u
(ν−1)
h , fh, w, ν1, ν2, ν3) → u

(ν)
h

1) Set x0 = u
(ν−1)
h , and x(ν1) = K(ν1)x0.

2) Put f ′
h = 1

w2 (fh −Bhẋ
(ν1) −Ahx

(ν1)).

= 1
w2 [NBh(ẋ

(ν1) − ẋ(ν1−1)) +NAh(x
(ν1) − x(ν1−1))].

3) Compute x̄ by TGW (x(ν1), f ′
h, 0, ν2) → x̄.

4) x̃ = x(ν1) + wx̄.

5) Compute u
(ν)
h by TGW (x̃, fh, 0, ν3) → u(ν).

This paper is organized as follows. In section 2, convergence analysis of a general
successive approximation scheme is presented. The analysis is based on the theory
Volterra integral equation together with Laplace transformation with respect to the
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temporal parameter to make this approach applicable to a time-dependent problem
which is considered in this work. Section 2.1 is devoted to present the convergence
analysis of the classical two-grid waveform relaxation method. In section 2.2, we de-
scribe the extension of this analysis matching the new two-grid waveform relaxation.
We validate our theoretical results of the new two-grid waveform relaxation by numer-
ical simulations in section 3. We compared three methods, Guass-Seidel waveform
relaxation, classical two-grid waveform relaxation and the new two-grid waveform
relaxation obtaining their averaged convergence factor.

2. convergence analysis

The convergence analysis of the two-grid waveform relaxation method presented
here is based on the theory of Volterra integral equations together with Laplace trans-
formation with respect to the temporal parameter to reduce the time-dependent prob-
lem to a set of time-independent problems with a complex parameter. Considering a
general iteration scheme H as a successive approximation scheme u(ν) = Hu(v−1)+ϕ,
we state the main theorems used to prove the convergence results where H is defined
as

Hu = Hu+Hcu, (2.1)

with complex matrix H, the linear Volterra convolution operator Hc and the matrix-
valued kernel hc that is:

Hcu(t) = hc ⋆ u(t) =

∫ t

0

hc(t− s)u(s) ds.

We recall that convergence of the H will be guaranteed if and only if the spectral
radius of it be smaller than one. Equivalently, we can consider some more applicable
conditions stated by the following Lemmas. In the case of finite time-interval, we
have:

Lemma 2.1. [9] Suppose hc ∈ C[0, T ] and consider H as an operator in C[0, T ].
Then, H is a bounded operator and ρ(H) = ρ(H).

Also, the next Lemma indicates the spectral radius of operator H in the case of
infinite-time intervals.

Lemma 2.2. [9] Suppose hc ∈ L1(0,∞), and consider H as an operator in Lp(0,∞)
with 1 ≤ p ≤ ∞. Then, H is a bounded operator with spectral radius

ρ(H) = sup
Re(z)≥0

ρ(H(z))

= sup
ξ∈R

ρ(H(iξ)),
(2.2)

where H(z) = H +Hc(z), and Hc(z) denotes the Laplace-transform of hc.
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2.1. Classical two-grid convergence. We can rewrite the classical two-grid cycle
as an explicit successive approximation method u(ν) = Mu(ν−1) + ϕ forcing the

analytical solution (1.2) u(t) = e−B−1Atu0 +
∫ t

0
eB

−1A(s−t)B−1f(s) ds, to the TGW
algorithm (Algorithm 1) [9]. So, the classical two-grid waveform relaxation operator
M yields

Mu(t) = Kν2CKν1u(t), (2.3)

where K is the standard waveform relaxation operator given by

Ku(t) =M−1
B NBu(t) +Kcu(t) (2.4)

and Kc is a linear Volterra convolution operator with kernel kc, defined as

Kcu(t) = kc ⋆ u(t) =

∫ t

0

kc(t− s)u(s) ds,

kc(t) = e−M−1
B MAtM−1

B (NA −MAM
−1
B NB). (2.5)

Also, C is the two-grid correction waveform operator

Cu(t) = (I − pB−1
H rBh)u(t) + Ccu(t), (2.6)

where the operator Cc is of linear Volterra convolution type with matrix valued kernel

cc(t) = pe−B−1
H AHtB−1

H (AHB
−1
H rBh − rAh). So we can rewrite operator M in (2.3)

as

Mu(t) = (M−1
Bh
NBh

)ν2(I − pB−1
H rBh)(M

−1
Bh
NBh

)ν1u(t) +Mcu(t),

where the operator Mcu(t) is a linear combination of products of linear Volterra
convolution operators Kc and Cc. Its kernel and the Laplace transform of this kernel
are denoted by mc(t) and Mc(z).

Considering e(ν) as the error of the νth two-grid waveform relaxation iterate, e(ν) =
Me(ν), we can obtain the Laplace transform of it as

ẽ(ν)(z) = [(M−1
Bh
Nbh)

ν2(I − pB−1
H rBh)(M

−1
Bh
Nbh)

ν1

+Mc(z)]ẽ
(ν−1)(z) = M(z)ẽ(ν−1)(z),

where

M(z) = Kν2(z)(I − p(zBH +AH)−1r(zBh +Ah))K
ν1(z), (2.7)

K = (zMBh+MAh
)−1(zNBh

+NAh
). (2.8)

Now, we can obtain the spectral radius of the classical two-grid waveform relaxation
in finite- and infinite-time intervals using Lemmas 2.1 and 2.2, respectively. To be
more precise, we have the following theorems [9]:

Theorem 2.3. (finite-time interval) the two-grid waveform relaxation operator M is
a bounded operator in C[0, T ] and

ρ(M) = ρ
(
M−1

Bh
NBh

)ν2(I − pB−1
H rBh)(M

−1
Bh
NBh

)ν1
)
.
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Theorem 2.4. (finite-time interval) Suppose all eigenvalues of B−1
H AH andM−1

Bh
MAh

have positive real parts and consider M as an operator in Lp(0,∞) with 1 ≤ p ≤ ∞.
Then, M is a bounded operator with spectral radius

ρ(M) = sup
Re(z)≥0

ρ(M(z))

= sup
ξ∈R

ρ(M(iξ)).

2.2. New two-grid convergence. In the rest of this section, first we present a
Lemma to state the new two-grid waveform relaxation as an explicit successive ap-
proximation method. Then, we show the convergence of this method by two Lemmas
which are an extension of Theorems 2.3 and 2.4, for finite- and infinite-time intervals.

Lemma 2.5. The NTGW cycle can be expressed as an explicit successive approxi-
mation method, u(ν) = Nu(ν−1) + ψ, such that the operator N is

Nu(t) = Kν3CRKν1u(t), (2.9)

with K the standard waveform relaxation operator (2.4) and CR the new two-grid
correction waveform operator

CRu(t) =
(
I − pB−1

H rBh

)(
I +wKν2

(
I −

(
1 +

1

w2

)
pB−1

H rBh

))
u(t)

+ CRcu(t), (2.10)

where CRc is of linear Volterra convolution type operator.

Proof. As we explained before, applying the classical two-grid scheme on the initial
value problem (1.2) with initial guess x̃ = x(ν1) +wx̄ leads to the NTGW. So we will
do the following steps:

1) First, we present the explicit successive approximation method to compute x̄,
2) Then, in a similar way we obtain the explicit successive approximation method

to compute u
(ν)
h ,

3) Finally setting x̄ in x̃ and considering x̃ as the initial guess of the classical two-
grid waveform relaxation, step 5 of Algorithm 2, we can compute the whole
explicit successive approximation of the new two-grid waveform relaxation
method to obtain new iterate u(ν).

1) Consider the coarse-grid correction steps to compute x̄, as follows:

i- dh(t) = Bhẋ
(ν1)(t) +Ahx

(ν1)(t)− f ′h(t),
ii- dh(t) = rdH(t),
iii- BH v̇(t)H +AHvH(t) = dH(t), vH(0) = 0,
iv- x̄ = x(ν1) − pvH .

Substituting the defect vector and the analytical solution vH , that is

vH(t) = e−B−1AtvH(0) +

∫ t

0

eB
−1A(s−t)B−1dH(s) ds,
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into the step iv, we obtain

x̄ = xν1 − p(

∫ t

0

eB
−1
H AH(s−t)B−1

H r[(1 +
1

w2
)Bh ˙xν1

+ (1 +
1

w2
)Ahx

ν1 − 1

w2
fh] ds)

= x(ν1)(t) +
1

w2
p

∫ t

0

eB
−1
H AH(s−t)B−1

H rfh ds

− (1 +
1

w2
)p

∫ t

0

eB
−1
H AH(s−t)B−1

H rAhx
(ν1)(s) ds

− (1 +
1

w2
)p

∫ t

0

eB
−1
H AH(s−t)B−1

H rBhẋ
(ν1)(s) ds, (2.11)

where p and r are prolongation and restriction operators, respectively. In equation
(2.11) we can omit the time derivative by replacing this equation by the following
statement

− (1 +
1

w2
)p

∫ t

0

eB
−1
H AH(s−t)B−1

H rBhẋ
(ν1)(s) ds

=

∫ t

0

eB
−1
H AH(s−t)B−1

H rBhẋ
(ν1)(s) ds± eB

−1
H AH(s−t)B−1

H AHB
−1
H rBhx

(ν1)

=

∫ t

0

d

ds

(
eB

−1
H AH(s−t)B−1

H rBhx
(ν1)(s)

)
ds

−
∫ t

0

eB
−1
H AH(s−t)B−1

H AHB
−1
H rBhx

(ν1)(s) ds

= B−1
H rBhx

(ν1)(t)− e−B−1
H AHtB−1

H rBhx
(ν1)(0) (2.12)

−
∫ t

0

eB
−1
H AH(s−t)B−1

H AHB
−1
H rBhx

(ν1)(s) ds.

Replacing (2.12) by (2.11) we obtain the explicit successive approximation of the x̄,
as follows,

x̄ = M1x
(ν1)(t) +Kν2ϕ1(t),

where

M1x
(ν1)(t) = Kν2C1x(ν1)(t)

C1x(ν1)(t) = (I − (1 +
1

w2
)pB−1

H rBh)x
(ν1)(t) + C1cx(ν1)(t),

C1cx(ν1)(t) = C1c ⋆ x
(ν1)(t) =

∫ t

0

C1c(t− s)x(ν1)(s) ds,

C1c(t) = (1 +
1

w2
)pe−B−1

H AHtB−1
H (AHB

−1
H rBh − rAh),
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and

ϕ1(t) =

(1 +
1

w2
)pe−B−1

H AHtB−1
H rBhx

(ν1)(0) +
1

w2
p

∫ t

0

eB
−1
H AH(s−t)B−1

H rfh ds.

By the same way, we can compute the explicit successive approximation of u(ν) as
follows,

u(ν) = M2x̃(t) +Kν3ϕ2(t), (2.13)

such that

M2x̃(t) = Kν3C2x̃(t),
C2x̃(t) = (I − pB−1

H rBh)x̃(t) + C2cx̃(t),

C2cx̃(t) = C2c ⋆ x̃(t) =

∫ t

0

C2c(t− s)x̃(s) ds,

C2c = pe−B−1
H AHtB−1

H (AHB
−1
H rBh − rAh),

and

ϕ2(t) = pe−B−1
H AHtB−1

H rBhx̃(0) + p

∫ t

0

eB
−1
H AH(s−t)B−1

H rf(s) ds.

Setting x̃ = xν1 +wx̄ and x(ν1) = K1u
(ν−1) into the equation (2.13) we obtain

u(ν) = Nu(ν−1) + ψ,

Nu(t) = Kν3CRKν1u(t),

CRu(t) = (I − pB−1
H rBh)(I +wKν2(I − (1 +

1

w2
)pB−1

H rBh))u(t)

+ CRcu(t),

CRcu(t) = C2c ⋆ (I +wKν2(I − (1 +
1

w2
)pB−1

H rBh))u(t)

+ w(I − pB−1
H rBh)Kν2(C1c ⋆ u(t))

+ wC2c ⋆ (Kν2C1c ⋆ u(t)).

where ψ = wKν3C2Kν2ϕ1 +Kν3ϕ2. So

Nu(t) = (M−1
Bh
NBh

)ν3(I − pB−1
H rBh)×

(I +w(M−1
Bh
NBh

)ν2(I − (1 +
1

w2
)pB−1

H rBh))(M
−1
Bh
NBh

)ν1u(t)

+Ncu(t).

Operator Nc is a linear combination of product of linear Volterra convolution operator
Kc and CRc. Thus it is itself of linear Volterra convolution type. □

Let e(ν) be the error of the ν-th iteration of the new two-grid waveform relaxation
method, i.e., e(ν) = u(ν) − u. Using lamma 2.5, we can conclude e(ν) = N e(ν−1).
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Therefore the Laplace transform of this equation is as follows

ẽ(ν) = Nẽ(ν−1),

N = Kν3RKν1 ,

K = (zMBh
+MAh

)−1(zNBh
+NAh

),

R = (I − pB−1
H rBh)(I +wKν2(I − (1 +

1

w2
)B−1

H rBh))ẽ
(ν−1)

+ L(I +wKν2(I − (1 +
1

w2
)B−1

H rBh))ẽ
(ν−1)

+w(I − pB−1
H rBh)K

ν2 [(1 +
1

w2
)L]ẽ(ν−1) +wL[(1 +

1

w2
)L]ẽ(ν−1)

+ Lẽ(ν−1),

L = p(AH + zBH)−1(AHB
−1
H rBh − rAh).

Now, we can conclude the convergence of the new two-grid waveform relaxation
method in the finite time interval by using Lemma 2.1.

Lemma 2.6. The new two-grid waveform relaxation operator N is a bounded operator
in C[0, T ] and

ρ(N ) = ρ((M−1
Bh
NBh

)ν3(I − pB−1
H rBh)×

(I +w(M−1
Bh
NBh

)ν2(I − (1 +
1

w2
)pB−1

H rBh))(M
−1
Bh
NBh

)ν1).
(2.14)

Proof. Both Kc and CRc are continuous operators on [0, T ], So, we can conclude
the kernel of Nc also will be in the interval [0, T ]. Thus Lemma 2.1 guarantees the
presented expression for the spectral radius of the operator N . □
Lemma 2.7. Suppose all eigenvalues of B−1

H AH and M−1
Bh
MAh

have positive real
parts and N be an operator in Lp(0,∞) with 1 ≤ p < ∞, then N is a bounded
operator with spectral radius

ρ(N ) = sup
Re(z)≥0

ρ(N(z))

= sup
ξ∈R

ρ(N(iξ)).
(2.15)

Proof. The positivity of B−1
H AH and M−1

Bh
MAh

can be concluded from the bounded-
ness of the waveform relaxation operator K and from the boundedness of the analytical
solution of the equation (1.2) ( on ΩH). On the other hand, we can easily obtain the
equality

Nc(z) = N− lim
z→∞

N(z).

We can conclude from positivity of real parts of all eigenvalues of B−1
H AH and

M−1
Bh
MAh

, the entries of Nc(z) are rational functions of z vanishing at infinity, all of
whose poles have negative real part. Therefore, this statement together with using
an inverse Laplace transformation argument implies that kernel of Nc is embedded in
the L1(0,∞). Finally, the proof will be complete following Lemma 2.2. □
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3. Numerical results

In this section, we compare the numerical solution of the three methods: The
Gauss-Seidel waveform relaxation, the classical two-grid waveform relaxation and the
new two-grid waveform relaxation in term of convergence factors using two different
examples. We consider the following two dimensional heat equation.

∂u

∂t
−∆2u = f, (x, y) ∈ [0, 1]× [0, 1], t ∈ [0, 1].

In both cases, the classical two-grid waveform relaxation and the new two-grid wave-
form relaxation, we consider a linear finite element discretization on a uniform trian-
gular spatial mesh as mentioned before leads to the following ODE system,

Bhu̇h(t) +Ahuh(t) = Fh(t).

In the case of dealing with a structured grid, however, it suffices to represent the
discrete operators utilizing stencils. The corresponding stencils obtained for the mass
and stiffness matrices in two dimensions are as follows:

Bh =
1

12

 1 1
1 6 1
1 1

 , Ah =
1

h2

 −1
−1 4 −1

−1

 .
Regarding the intergrid transfer operators, the stencil of the restriction operator, H2h

h ,
is given as follows,

I2hh =
1

8

 1 1
1 2 1
1 1

 .
The prolongation operator, Ih2h, is obtained according to the relation I2hh = 1

4I
h
2h, [15].

The convergence factors, presented in Tables 2 and 3, are computed using the
following division

ρ(ν) =
||e(ν)h ||

||e(ν−1)
h ||

.

To compute the numerical solution of the NTGW, we use the optimum value of
parameter ω obtained from the following algorithm [14].

Agorithm 3 The optimum value of the parameter ω.
1) q = (aa : hh : bb); (where aa = a−1

a2 , bb =
1−a
a2 and 0 < hh < 1)

2) for k = 1 : length(q)
ω = q(k);
u = Applying Algorithm2;
error = uexact − u;
max(k) = Compute infinity norm of the error;

end
3) plot (q,max).
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Figure 1. The optimum value of the parameter ω on mesh 49× 49
with ν1 = ν2 = ν3 = 1.

We illustrate the resulting values of the parameter ω in Figure 1 by considering
spatial mesh 49 × 49 with one iteration of smoothing step in NTGW method. Also,
a comparable results related to the different spatial discretization are presented in
Table 1

Table 1. Optimum value of the parameter w for several number of h and by

new time-dependent two-grid method.

h 1
8

1
16

1
32

1
64

1
128

optimum value of w 0.8091 0.6179 0.1887 0.1107 0.0847

For the first example, we consider the Dirichlet boundary and initial conditions in
such a way that they admit in the following exact solution

u(x, y, t) = t2 sin(
πx

2
) sin(

πy

2
)

We assume the finite element discretization by linear basis functions, on a fixed spatial
finite element mesh size h = 2−7 together with the Crank-Nicolson time-discretization
which its mesh size is varying from 0.04 to 0.001. We notice that the smaller time
steps are more applicable to investigate the spectral radius of the continuous waveform
relaxation method [16]. As mentioned before, we consider the standard coarsening, full
weighting restriction and linear interpolation as inter-grid transfer operators. Also,
to compute coarse grid operators AH and BH , we pursue the DCA discretization. In
Table 2, we show the comparative convergence factors of the Gauss-Seidel waveform
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relaxation, the classical two-grid waveform relaxation and the new two-grid waveform
relaxation together with the necessary iterations to reduce the initial residual by a
factor 10−10 and the corresponding CPU time and also the norms of the errors, which
are constant for the three schemes where the method is convergent. As you can see the
behavior of the proposed new two-grid waveform relaxation method is satisfactory.

Table 2. Results of example 1. The comparative convergence
factors of the Gauss-Seidel waveform relaxation (GS), the classical
two-grid waveform relaxation (TG) and the new two-grid waveform
relaxation (NTG) where h = 2−7 and τ is varying from 0.04 to 0.001.

τ method iter ||.||∞ ||.||2 ρ CPU res

GS 5000 1.3017× 10−5 1.0126× 10−4 0.9991 891 s 0.0067
0.04 TG 14 4.2959× 10−5 3.4724× 10−4 0.2617 10 s 9.9599× 10−11

NTG 9 4.2959× 10−5 3.4724× 10−4 0.1247 9 s 7.8106× 10−11

GS 5000 1.3272× 10−5 1.0845× 10−4 0.9959 876 s 4.3890× 10−4

0.02 TG 13 1.4530× 10−5 2.0134× 10−4 0.2354 8 s 4.7462× 10−11

NTG 8 1.4530× 10−5 2.0134× 10−4 0.1030 8 s 7.7974× 10−11

GS 3625 3.8156× 10−6 3.1738× 10−5 0.9856 716 s 9.9589× 10−11

0.01 TG 12 3.8156× 10−6 3.1738× 10−5 0.2368 10 s 2.5053× 10−11

NTG 7 3.8156× 10−6 3.1738× 10−5 0.0955 10 s 9.4050× 10−11

GS 1809 1.0339× 10−6 8.7701× 10−6 0.9724 429 s 9.7655× 10−11

0.005 TG 10 1.0339× 10−6 8.7701× 10−6 0.2569 6 s 5.1234× 10−11

NTG 7 1.0339× 10−6 8.7701× 10−6 0.0952 7 s 1.1617× 10−11

GS 895 2.6999× 10−7 2.3256× 10−6 0.9478 165 s 9.9510× 10−11

0.0025 TG 9 2.6999× 10−7 2.3256× 10−6 0.2188 5 s 2.4466× 10−11

NTG 6 2.6999× 10−7 2.3256× 10−6 0.0946 7 s 1.4975× 10−11

GS 353 4.4362× 10−8 3.8769× 10−7 0.8836 67 s 9.3922× 10−11

0.001 TG 7 4.4362× 10−8 3.8769× 10−7 0.2347 4 s 2.8991× 10−11

NTG 6 4.4362× 10−8 3.8769× 10−7 0.0610 4 s 8.9077× 10−11

For the second example, the homogeneous Dirichlet boundary conditions and the
initial condition are chosen such that the analytical solution is given by

u(x, y, t) = 1 + sin(πx/2) sin(πy/2) exp(−π2t/2).

Again we consider a fixed spatial finite element mesh size h = 2−7 together with
varying time-steps from 0.04 to 0.001.

In Table 3, we have reported the comparable results of the numerical averaged
convergence factors applying three methods: Gauss-Seidel approximation, classical
two-grid and new two-grid scheme together with the necessary iterations to reduce
the initial residual by a factor 10−10 and the corresponding CPU time and also the
norms of the errors, which are constant for the three schemes where the method
is convergent. As we can see, the results concerning the new two-grid method is
satisfactory.

4. Conclusions

This work is devoted to extending the new two-grid method introduced in [14] to
the case when the problem is time-dependent, using the known heat equation. They
presented a new multigrid for Poisson equation based on finite difference technique.
This work is more general than their work in the following aspects:
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Table 3. Results of example 2. The comparative convergence factors of the

Gauss-Seidel waveform relaxation (GS), the classical two-grid waveform relax-
ation (TG) and the new two-grid waveform relaxation (NTG) where h = 2−7

and τ is varying from 0.04 to 0.001.

τ method iter ||.||∞ ||.||2 ρ CPU res

GS 5000 0.0230 0.1840 0.9993 899 s 0.0534
0.04 TG 19 5.2134× 10−5 0.0042 0.3436 10 s 8.5999× 10−11

NTG 12 5.2134× 10−5 0.0042 0.1399 9 s 9.1255× 10−11

GS 5000 3.2446× 10−4 0.0026 0.9975 920 s 0.0320
0.02 TG 19 3.2446× 10−4 0.0026 0.3009 9 s 4.3306× 10−11

NTG 12 3.2446× 10−4 0.0026 0.1379 9 s 4.6382× 10−11

GS 4237 1.2487× 10−4 0.0010 0.9844 769 s 9.9380× 10−11

0.01 TG 18 1.2487× 10−4 0.0010 0.2148 8 s 7.5243× 10−11

NTG 12 1.2487× 10−4 0.0010 0.1379 9 s 2.3113× 10−11

GS 2168 5.1473× 10−5 4.3197× 10−4 0.9689 433 s 9.7812× 10−11

0.005 TG 18 5.1473× 10−5 4.3197× 10−4 0.2487 8 s 4.4703× 10−11

NTG 11 5.1473× 10−5 4.3197× 10−4 0.1238 8 s 8.9182× 10−11

GS 1103 2.5114× 10−5 2.2147× 10−4 0.9397 208 s 9.7242× 10−11

0.0025 TG 17 2.5114× 10−5 2.2147× 10−4 0.2798 8 s 9.6319× 10−11

NTG 11 2.5114× 10−5 2.2147× 10−4 0.1323 8 s 5.5868× 10−11

GS 453 1.0493× 10−5 9.6229× 10−5 0.8611 85 s 9.2321× 10−11

0.001 TG 17 1.0493× 10−5 9.6229× 10−5 0.3095 8 s 6.1004× 10−11

NTG 11 1.0493× 10−5 9.6229× 10−5 0.1690 8 s 5.7011× 10−11

• NTGW is applicable for time-dependent equations.
• Using the finite element discretization leads to more general ODE system

against the finite difference method.

A method of line approach together with a finite element spatial discretization is con-
sidered. The resulting ODE system is solved by means of the new two-grid waveform
relaxation. Our analysis of the convergence factor is based on the spectral radius of
this new two-grid waveform relaxation operator. The convergence property of the
NTGW is analyzed by Lemmas 2.6 and 2.7 based on spectral radius of this method.
As mentioned in Tables 2, 3 among popular methods such as Gauss-Seidel and clas-
sical two-grid, the NTGW has better averaged convergence factor.

In this work, we studied the continuous-time case of the NTGW. So, studding
on the discontinuous-time case can be considered as a future work. Also, using the
NTGW as ODE solver for the other time-dependent equation is applicable.
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