Solving the forward-backward heat equation with a non-overlapping domain decomposition method based on multiquadric RBF meshfree method

Document Type : Research Paper

Authors

Department of mathematics, University of Kurdistan, Sanandaj, Iran.

Abstract

‎‎‎‎‎In this paper, we present a numerical technique to deal with the one-dimensional forward-backward heat equations. First, the physical domain is divided into two non-overlapping subdomains resulting in two separate forward and backward subproblems, and then a meshless method based on multiquadric radial basis functions is employed to treat the spatial variables in each subproblem using the Kansa’s method. We use a time discretization scheme to approximate the time derivative by the forward and backward finite difference formulas. In order to have adequate boundary conditions for each subproblem, an initial approximate solution is assumed on the interface boundary, and the solution is improved by solving the subproblems in an iterative way. The numerical results show that the proposed method is very useful and computationally efficient in comparison with the previous works.

Keywords


  • [1]          A. K. Aziz and J. L. Liu, A weighted least squares method for the backward-forward heat equa- tion, SIAM J. Numer. Anal., 28 (1991), 156-167.
  • [2]          B. Baxter, Preconditioned conjugate gradients, radial basis functions, and Toeplitz matrices, Comput. Math. Appl., 43 (2002), 305-318.
  • [3]          R. K. Beatson, J. B. Cherrie, and C. T. Mouat, Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration, Adv. Comput. Math., 11 (1999), 253-270.
  • [4]          W. Beatson, J. B. Cherrie, and T. Mouat, Fast solution of the radial basis function interpolation methods: domain decomposition methods, SIAM J. Sci. Comp., 22 (2000), 1717-1740.
  • [5]          M. D. Buhmann, Radial Basis Functions: Theory and Implementations , Cambridge University Press, Cambridge, 2003.
  • [6]          A. H. D. Cheng, M. A. Golberg, E.J. Kansa, and T. Zammito, Exponential convergence and h-c Multiquadric collocation method for partial differential equations, Numer. Meth. Part. Differ. Equat., 19 (2003), 571-594.
  • [7]          X. L. Cheng and J. Sun. Iterative methods for the forward-backward heat equation, J. Comput. Math., 23 (2005), 419-424.
  • [8]          D. S. Daoud, Overlapping Schwarz waveform relaxation method for the solution of the forward- backward heat equation,, J Comput. Appl. Math., 208(2) (2007), 380-390.
  • [9]          M. Dehghan, M. Abbaszadeha, and A. Mohebbib, The numerical solution of nonlinear high dimensional generalized BenjaminBonaMahonyBurgers equation via the meshless method of radial basis functions, Computers and Mathematics with Applications, 68 (2014), 212-237.
  • [10]        M. Dehghan, M. Abbaszadeh, and A. Mohebbi, Analysis of a meshless method for the time fractional diffusion-wave equation, Numerical Algorithms, 73(2) (2016), 445-476.
  • [11]        G. E. Fasshuaer, On choosing optimal shape parameters for RBF approximation, Numerical Algorithms, 45(1) (2007), 345368.
  • [12]        R. Franke, Scattered data interpolation: test of some methods, Comput. Math. Appl., 38 (1982), 595-610.
  • [13]        G .E. Fasshauer, On smoothing for multilevel approximation with radial basis functions, in Approximation Theory, IX, Vol. 2: Computational Aspects, C.K. Chui and L.L. Schumaker (eds.), Vanderbil University Press, (1998), 55-62.
  • [14]        G. E. Fasshuaer, Solving differential equations with radial basis functions: multilevel methods and smoothing, Advances in Computational Mathematics, 11(2) (1999), 139-159.
  • [15]        G. E. Fasshuaer, Meshfree approximation methods with MATLAB, Interdisciplinary Mathe- matical Sciences, 6 (2007).
  • [16]        A. J. Ferreira, P. A. Martins, and C. M. Roque, Solving time-dependent engineering problems with multiquadrics, Journal of Sound and Vibration, 280 (2005), 1595-1610.
  • [17]        R. Franke, Scattered data interpolation: test of some methods, Comput. Math. Appl., 38 (1982), 595-610.
  • [18]        J. A. Franklin and E.R. Rodemich, Numerical analysis of an elliptic-parabolic partial dierential equation, SIAM J. Numer. Anal. 5 (1968) 680716.
  • [19]        D. A. French, Continuous Galerkin finite element methods for a forward-backward heat equation, Numer. Methods Partial Differential quations, 15 (1999), 257-265.
  • [20]        H. D. Han and D. S. Yin, A non-overlap domain decomposition method for the forward-backward heat equation, J. Comput. Appl. Math., 159 (2003), 35-44.
  • [21]        R. L. Hardy, Theory and applications of the multiquadric-biharmonic method: 20 years of discovery, Computers and Mathematics with Applications, 19 (1990), 163-208.
  • [22]        E. J. Kansa, Multi-quadrics - a scattered data approximation scheme with applications to com- putational fluid dynamics, Comput. Math. Appl., 19 (1990), 147-161.
  • [23]        A. Karageorghis, M. A. Jankowska, and C.S. Chen, Kansa-RBF algorithms for elliptic problems in regular polygonal domains, Numer. Algorithms, 79 (2018), 399-421.
  • [24]        C. K. Lee, X. Liu, and S. C. Fan, Local multiquadric approximation for solving boundary value problems, Computational Mechanics, 30 (2003), 396-409.
  • [25]        L. Ling and E. J. Kansa, A least-squares preconditioner for radial basis functions collocation methods, Adv. Comput. Math., 23 (2004), 31-54.
  • [26]        L. Ling and E. J. Kansa, Preconditioning for radial basis functions with domain decomposition methods, MATH. COMPUT. MODEL., 40 (2004), 1413-1427.
  • [27]        L. Ling and Y. C. Hon, Improved numerical solver for Kansas method based on affine space decomposition, Eng. Anal. Boundary Elem., 29 (2005), 1077-1085.
  • [28]        G. R. Liu Mesh Free Methods, Moving Beyond the Finite Element Method, CRC Press, New York, 2002.
  • [29]        G. R. Liu and Y. T. Gu, An introduction to meshfree methods and their programming,, Springer, Netherlands, 2005.
  • [30]        H. Lu and J. Maubach, A finite element method and variable transformations for a forward- backward heat equation, Numer. Math., 81 (1998), 249-272.
  • [31]        W. R. Madych and S. A. Nelson, Multivariate interpolation and conditionally positive definite functions, Approx. Theory. Appl, 4 (1988), 77-89.
  • [32]        W. R. Madych, Miscellaneous error bounds for multiquadric and related interpolators, Comput. Math. Appl., 24 (1992), 121-38.
  • [33]        D. B. Melrose, Plasma astrophysics: non-thermal processes in difuse magnetized plasmas, Vol. 1: The emission, absorption, and transfer of waves in plasmas. Vol. 2: Astrophysical application, Gordon and Breach, New York, (1978).
  • [34]        A. F. Messiter and R .L. Enlow, A model for laminar boundary-layer ow near a separation point, SIAM J. Appl. Math., 25 (1973), 655670.
  • [35]        F. Paronetto, Elliptic approximation of forward-backward parabolic equations, Commun. Pur. Appl. Anal., 19(2) (2020), 1017-1036.
  • [36]        W. R. C. Phillips and J. T. Ratnanather, The outer region of a turbulent boundary layer, Phys. Fluids A, Fluid dynamics 2, (1990), 427.
  • [37]        C. Shu, H. Ding, and K. S. Yeo, Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 192(3) (2003), 941-954.
  • [38]        J. Sun and X. L. Cheng , Iterrative methods for a forward-backward heat equation in two- dimension, Appl. Math. J. Chinese Univ., 25(1) (2010), 101-111.
  • [39]        H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Advances in Computational Mathematics, 4(1) (1995), 389-396.