[1] N. Aguila-Camacho, M. A. Duarte-Mermoud, and J. A. Javier Gallegos, Lyapunov functions for fractional order system, Common Nonlinear sci. Numer. sim., 19 (2014), 2951–2957.
[2] B. Bandyopadhyay and S. Kamal, Stabilization and control of fractional-order systems: A sliding mode Approach, springer, 2015.
[3] L. Changpin and D. Weihua, Remarks on fractional derivatives, App. Math. Comput., 187 (2007), 777–784.
[4] G. Chen and X. Dong, From chaos to order methodologies, perspectives, and applications, Word Scientific, Singapore, 1998.
[5] W. C. Chen, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos Solitons Fractal, 36 (2006), 1305–1314.
[6] A. L. Chian, E. L. Rempel, and C. Rogers, Complex economic dynamics: Chaotic saddle, crisis, and intermittency, Chaos Solitons Fractals, 29 (2006), 1194–1218.
[7] A. L. Chian, F. A. Zorotta, E. L. Rempel, and C. Rogers, Attractor emerging crisis in chaotic business cycles, Chaos Solitons Fractal, 24, (2005), 869–875.
[8] S. Dadras and H. R. Momeni, Control of a fractional-order economical system via sliding mode, Physical A, 389 (2010), 2434–2442.
[9] M. F. Danca, R. Garrappa, W. K. S Tang, and G. Chen, Sustaining stable dynamics of a fractional-order chaotic financial system by parameter switching, computers and mathematics with Applications, 66 (2013), 702–716.
[10] A. Hajipour and H. Tavakoli, Analysis and circuit simulation of a novel nonlinear fractional incommensurate order financial system, Optik 127(22) ()2016, 10643–10652.
[11] A. Khan and A. Tyagi, Disturbance observer-based adaptive sliding mode hybrid projective synchronisation of identical fractional-order financial systems, Pramana J. Phys., 90(67) (2018), DOI:10.1007/s12043-018-1555-8.
[12] J. H. Ma and Y. S. Chen, Study for the bifurcation topological structure and the global complicated character of a kind of non-linear finance system(I), Appl. Math., 22(11) (2001), 1119–1128.
[13] J. H. Ma and Y. S. Chen,Study for the bifurcation topological structure and the global complicated character of a kind of non-linear finance system(II), Appl. Math., 22(12) (2001), 1236–1242.
[14] D. Matignon, Stability results for fractional differential equations with applications to control processing, Computational Engineering in Systems Applications, 2 (1996), 963–968.
[15] R. A. Meyers, Complex system in Finance and Econometrics, Springer, New York, 2009.
[16] B Naderi, H. Kheiri, and V. Vafaei, Modified Sliding-Mode Control Method for Synchronization a Class of Chaotic Fractional-Order Systems with Application in Encryption, The ISC International Journal of Information Security, 12(1) (2020), 55–66.
[17] I. Petras, Fractional-order nonlinear systems, modeling, analysis, and simulation, Higher Education Press and Springer, Beijing, 2011.
[18] C. K. Tacha, I. M. Volos, I. N. Kyaprianidis, S. Stouboulos, and V. T. P. Vaidyanathan, Analysis, adaptive control and circuit simulation of a novel nonlinear finance systemm, App. Math. Comput., 276 (2016), 200–217.
[19] O. I. Tacha, J. M-Munoz-Pacheco, E. Zambrano-Serrano, I. N. Stouboulos, and T. Pham-V Determining the chaotic behavior in a fractional-order finance system with negative parameters, Nonlinear Dyn., (2018), DOI:10.1007/s11071-018-4425-5.
[20] Z. Wang and X. Huang, Synchronization of a chaotic fractional-order economical system with active control, Procida Engineering, 15 (2010), 516–520,
[21] B. Xin, and J. Zhang, Finite-time stabilizing a fractional-order chaotic financial system with market confidence, Nonlinear Dyn., 79(2) (2015), 1399–1409.