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Abstract In this paper, we present a new fractional-order financial system (FOFS) with the
new parameters. We study the synchronization for commensurate order of the

fractional-order financial system with disturbance observer (FOFSDO) on the new

parameters. Also, the sensitivity analysis of the synchronization error was investi-
gated by using the feedback control technique for the FOFSDO. The stability of the

used method demonstrates by Lyapunov stability theorem. Numerical simulations

are presented to ensure the validity and influence of the target feedback control
design in the presence of extrinsic bounded unknown disturbance.
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1. Introduction

In the last few years, enormously of researches showing, in the many nonlinear
fractional order systems in the fields of engineering and economics chaotic behavior
occurred [4, 6, 7, 15, 16, 17]. Chaotic nonlinear systems, are dynamic systems that
exhibit very high sensitivity to the initial conditions. Chaos phenomenon emerges in
the economy by the middle 80,s. To study an economic model, economists decided
that as a first step, only the endogenous variables considered the behavior of the
simple model.
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The fractional-order dynamic systems have emerged as a new investigated by the
researchers many of the results are analyzed. For example, in 2001, Chen et al [12, 13]
a third-order financial dynamic system was presented in terms of time and three state
variable; Wei-Ching Chen [5] presented non-linear dynamics and chaos in a fractional-
order financial system; Sara Dadras et al [8] applied control of a fractional-order
economical system via sliding mode; Zhen Wang et al [20] proposed synchronization
of a chaotic fractional-order economical system with active control; Danca et al [9]
presented sustaining stable dynamics of a fractional-order chaotic financial system
by parameter switching; Baogui Xin et al [21] presented stabilizing a fractional-order
chaotic financial system with market confidence.

In this paper, we try to investigate a new FOFS presented by [10, 18]. Our pro-
posed is to investigate on synchronization error for commensurate FOFSDO based
on the feedback control method and observe disturbance. The commensurate order
means the all order of equations in fractional order system are equal. Also, we are
to research the system sensitivity analysis by using new parameters and the different
initial conditions. The Lyapunov stability theorem in fractional is used for stability
of system.

The rest of this paper is organized as follows: Section 2 contains the fundamen-
tal definitions, lemma, theorem, and properties of fractional calculations. Section 3
analyzes the fractional-order financial system with new parameters. In section 4, we
discuss the synchronization error for commensurate order the FOFSDO based on the
feedback control method and using the approximation of disturbance in controller.
Finally, concluding remarks are presented in Section 6.

2. Preliminaries

In this section, we review some fundamental definitions of fractional calculus. Also,
we present some useful stability theorems and properties of fractional-order dynamical
systems.

Definition 2.1. [2] The qth order Riemann-Liouville derivative of fractional for the
function G(t) can be described as

RLDq
tG(t) = D(m)D−(m−q)G(t)

=
dm

dtm

[
1

Γ(m− q)

∫ t

0

(t− ζ)m−q−1G(ζ)dζ

]
,

(2.1)

where m− 1 < q < m,m ∈ N, q ∈ R+,Γ(q) =
∫∞

0
tq−1e−tdt.

Definition 2.2. [2] The qth order Caputo derivative of fractional for the function
G(t) is defined as follows:

cDq
tG(t) = D−(m−q)D(m)G(t)

=
1

Γ(m− q)

∫ t

0

(t− ζ)m−q−1G(m)(ζ)dζ,
(2.2)

where m− 1 < q ≤ m,m ∈ N, q ∈ R+,Γ(q) =
∫∞

0
tq−1e−tdt.

Some properties of fractional order differential equations are:
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• The linear characteristic of the Caputo fractional-order derivatives satisfies
the following
cDq

t [c1G1(t) + c2G2(t)] = cc1D
q
tG1(t) + cc2D

q
tG2(t), (2.3)

where c1, c2 are constants and G1, G2 are functions of t [3].
• The Caputo fractional-order derivative satisfies the following
cDq

tG(t) = 0, (2.4)

where G(t) is a constant function and 0 < q ≤ 1 [3].

Lemma 2.3. [1] Assume that G(t) ∈ R be a continuously differentiable function,
then we have

1

2
(cDq

tG
2(t)) ≤ G(t)cDq

tG(t), (2.5)

where 0 < q < 1 .

Theorem 2.4. [14] Autonomous system Dqx = Ax, x(0) = x0 is asymptotically stable
if the following condition is satisfied

|arg(λ(A))| > qπ

2
,

where 0 < q < 1 and λ(A) represents the eigenvalues of matrix A. Also, this system
is stable if and only if |arg(λ(A))| ≥ qπ

2 , and those critical eigenvalues that satisfy
|arg(λ(A))| = qπ

2 , have geometric multiplicity of one.

3. Analysis of the fractional-order financial system with new
parameters

A dynamical model of financial system introduced in [18] as follows:
ẋ = z + (y − a)x,

ẏ = 1− by − |x|,
ż = −x− cz,

(3.1)

recently extended form of financial system (3.1) introduced as a fractional-order
financial system as follows [10]. We let it as a master system:

Dq1x = z + (y − a)x,

Dq2y = 1− by − |x|,
Dq3z = −x− cz,

(3.2)

where the state variables x, y and z represent interest rate, the investment demand,
and the price index, respectively; The parameters a > 0, b > 0, and c > 0, are all
constants, represent saving amount, the cost per investment and the elasticity of
demand, respectively; 0 < qi ≤ 1 is the fractional derivative order finance system.

Consider the new parameters as a = 0.7, b = 0.1, c = 0.9 and the different ini-
tial condition (x(0), y(0), z(0)) = (2, 1,−1) [19], the phase portrait shows the chaotic
behavior of the system (3.2) for the commensurate and incommensurate orders (see
Figures 1 and 2 respectively). The system is chaotic when q > 0.79.
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Figure 1. The phase portrait of fractional order finance system
(3.2) for commensurate orders at q1 = q2 = q3 = q. (a)q=0.78,
(b)q=0.79, (c)q=0.87, (d)q=0.92, (e)q=0.96, (f)q=1.

4. Feedback control synchronization method for FOFSDO of
commensurate orders

In this section, the nonlinear feedback control method is presented to synchroniza-
tion of FOFS. Also, it is established that the synchronization error is stable under the
adaptive feedback control method. We also showed that the timing of synchronization
in return from the fractional orders is not so much different. We consider the slave
system as follows:



792 M. KARIMIAN, B. NADERI, AND Y. EDRISI TABRIZ

Figure 2. The phase portrait of fractional order finance system
(3.2) for incommensurate orders.(a) q1 = q2 = 1, q3 = 0.9, (b) q1 =
q3 = 1, q2 = 0.93, (c) q2 = q3 = 1, q1 = 0.9


Dq1x1 = z1 + (y1 − a)x1 + u1(t) + d1(t),

Dq2y1 = 1− by1 − |x1|+ u2(t) + d2(t),

Dq3z1 = −x1 − cz1 + u3(t) + d3(t),

(4.1)

where x1(t), y1(t) and z1(t) are interest rate, the investment demand and the price
index respectively. u1(t), u2(t) and u3(t) are controllers, and d1(t), d2(t), d3(t), (di ≥
0, i = 1, 2, 3) are unknown bounded external disturbances, such that the Caputo
fractional-order derivative of the di is bounded, i.e. Dqdi < ξi where ξ are unknown
positive constants. A disturbance is added to increase system performance resistance.

For synchronization, we define the synchronization error between the master system
(3.2) and slave system (4.1) as follows:


e1(t) = x1(t)− x(t),

e2(t) = y1(t)− y(t),

e3(t) = z1(t)− z(t).
(4.2)
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The dynamic error between master system (3.2) and slave system (4.1) is
Dq1
t e1(t) = e3 + y1e1 + xe2 − ae1 + u1 + d1,

Dq2
t e2(t) = −be2 − |x1|+ |x|+ u2 + d2,

Dq3
t e3(t) = −e1 − ce3 + u3 + d3,

(4.3)

and we consider adaptive feedback controller as follow
u1(t) = −y1e1 − xe2 − k1e1 − d̂1,

u2(t) = |x1| − |x| − k2e2 − d̂2,

u3(t) = −k3e3 − d̂3,

(4.4)

where ki ≥ 0, i = 1, 2, 3 are gain constants and d̂i is approximation of di for i = 1, 2, 3
.

By substituting (4.4) into (4.3), we have


Dq1
t e1(t) = e3 − ae1 − k1e1 + d̃1,

Dq2
t e2(t) = −be2 − k2e2 + d̃2,

Dq3
t e3(t) = −e1 − ce3 − k3e3 + d̃3,

(4.5)

where d̃i = di − d̂i, (i = 1, 2, 3). so we have the following result.

• If d̃i = di − d̂i = 0, the Jacobian matrix of (4.5) is

J =

−a− k1 0 1
0 −b− k2 0
−1 0 −c− k3

 , (4.6)

When a = 0.7, b = 0.1, c = 0.9, and k1 = k2 = k3 = 10, the eigenvalues are,
λ1 ≈ −10.8 + 0.995i, λ2 ≈ −10.8 − 0.995i, λ3 = −10.1, which satisfies
|arg(λi)| > qπ

2 (i = 1, 2, 3) for 0 ≤ q ≤ 1. Thus the synchronization error
system converges to zero as t −→ ∞ and therefore, synchronization between
the master system (3.2) and the slave system (4.1) is achieved.

• If d̃i = di − d̂i 6= 0. We define a observe disturbance role, as follow [11]:
φ1(t) = d1(t)− σ1x1,

φ2(t) = d2(t)− σ2y1,

φ3(t) = d3(t)− σ3z1,

=⇒


Dqφ1(t) = Dqd1(t)− σ1D

qx1,

Dqφ2(t) = Dqd2(t)− σ2D
qy1,

Dqφ3(t) = Dqd3(t)− σ3D
qz1.

(4.7)

By substituting (4.1) in (4.7), we have:
Dqφ1(t) = Dqd1(t)− σ1[z1 + (y1 − a)x1 + u1 + d1(t)],

Dqφ2(t) = Dqd2(t)− σ2[1− by1 − |x1|+ u2 + d2(t)],

Dqφ3(t) = Dqd3(t)− σ3[−x1 − cz1 + u3 + d3(t)].

(4.8)

In the following, for calculating the estimation of φi(t)(i = 1, 2, 3), we assume the
estimation law as follow
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Dqφ̂1(t) = −σ1[z1 + (y1 − a)x1 + σ1x1]− σ1u1 − σ1φ̂1(t),

Dqφ̂2(t) = −σ2[1− by1 − |x1|+ σ2y1]− σ2u2 − σ2φ̂2(t),

Dqφ̂3(t) = −σ3[−x1 − cz1 + σ3z1]− σ3u3 − σ3φ̂3(t),

(4.9)

where φ̂i is the estimation of φi, and let φ̃i = φ− φ̂
Using the observe law (4.7), we have


φ̂1(t) = d̂1(t)− σ1x1,

φ̂2(t) = d̂2(t)− σ2y1,

φ̂3(t) = d̂3(t)− σ3, z1

=⇒


φ̃1(t) = φ1 − φ̂1 = d1 − d̂1 = d̃1,

φ̃2(t) = φ2 − φ̂2 = d2 − d̂2 = d̃2,

φ̃3(t) = φ3 − φ̂3 = d3 − d̂3 = d̃2.

(4.10)

By applying fractional order Caputo derivative on (4.10), and using (4.9) and (4.8),
the error dynamic of disturbance will be as follow:

Dqφ̃1(t) = Dqφ1 −Dqφ̂1(t) = Dqd1 − σ1φ̃1

Dqφ̃2(t) = Dqφ2 −Dqφ̂2(t) = Dqd2 − σ2φ̃2

Dqφ̃3(t) = Dqφ3 −Dqφ̂3(t) = Dqd3 − σ3φ̃3.

(4.11)

In (4.7)-(4.11), for simplicity, we let σ1 = σ2 = σ3 = σ.
The stability of error systems via designed controllers and estimation law of dis-

turbance are discussed in the following theorems.

Theorem 4.1. Consider the financial fractional order system (3.2)and the system
(4.1) with unknown bounded disturbance. Then the synchronization error system (4.5)
is stable under the feedback controller (4.4) and disturbance approximation low (4.9)
.

Proof. We consider the Lyapunov function as follow

V (t) =
1

2

3∑
i=1

[e2
i (t) + d̃i

2
] =

1

2

3∑
i=1

[e2
i (t) + φ̃i

2
(t)]. (4.12)

By applying relationship (2.3) and lemma 2.3, we have

DqV (t) ≤
3∑
i=1

[ei(t)D
qei(t) + φ̃iD

qφ̃i]. (4.13)

By substituting (4.5) and (4.11) in (4.13), we get

DqiV (t) ≤ e1[e3 − ae1 − k1e1 + φ̃1] + e2[−be2 − k2e2 + φ̃2]

+ e3[−e1 − ce3 − k3e3 + φ̃3] + φ̃1(−σφ̃1 +Dqd1(t))

+ φ̃2(−σφ̃2 +Dqd2(t)) + φ̃3(−σφ̃3 +Dqd3(t)).

(4.14)

By sorting (4.14), the expression (4.15) can be deduced
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DqV (t) ≤− [ae2
1 + be2

2 + ce2
3]− [k1e

2
1 + k2e

2
2 + k3e

2
3]

− σ[φ̃1
2

+ φ̃2
2

+ φ̃3
2
]

+ φ̃1[e1 +Dqd1] + φ̃2[e1 +Dqd2] + φ̃3[e1 +Dqd3].

(4.15)

We know that the Dqdi ≤ ξ and system (3.2) is chaotic, so all state variables are
bounded. Therefor we can choose σ and ki’s such that

[k1e
2
1 + k2e

2
2 + k3e

2
3] + σ[φ̃1

2
+ φ̃2

2
+ φ̃3

2
] ≥ φ̃1[e1 +Dqd1]

+φ̃2[e1 +Dqd2] + φ̃3[e1 +Dqd3].
(4.16)

So
DqV (t) < 0.

Then the synchronization error e(t) is stable at zero. This complete the proof. �

5. Numerical simulation

In this section, numerical simulation is given to illustrate the validity of the pro-
posed method.

We choose the commensurate order q1 = q2 = q3 = 0.79, the new parameters
are considered as a = 0.7, b = 0.1, c = 0.9, initial conditions (x(0), y(0), z(0)) =

(2, 1,−1), (x1(0), y1(0), z1(0)) = (1,−2, 1), (φ̂1(0), φ̂2(0), φ̂3(0)) = (0.5, 0, 0.3) (k1, k2, k3) =
(100, 100, 100), σ = 3, and d1(t) = sin2(t), d2(t) = cos2(t), d3(t) = sin2(t).

In Figure 3 Phase portraits shows synchronization with the commensurate order of
the FOFSDO at q1 = q2 = q3 = 0.79. Figure 4 and Figure 5 show the synchronization
of the states for the master system (3.2) and the slave system (4.1) after applying the
controller (4.4)and approximation of disturbance respectively.

For more explanation, we are investigating some examples of synchronization based
on feedback control technique for different values of order as commensurate orders.
In Figure 6 synchronization errors e1(t), e2(t) and e3(t) are shown. Such that, Figure
6(a), 6(b) and 6(c) shows the error converges to zero in short time, for q1 = q2 = q3 =
0.79, q1 = q2 = q3 = 0.82 and q1 = q2 = q3 = 0.9 respectively.

6. Conclusion

The nonlinear feedback control method is presented the synchronization error of
FOFSDO. It is established that the synchronization error is stable under the feedback
control method, and showed that the timing of synchronization in return from the
fractional orders is not so much different. We also show that the synchronization
error system converges to zero as t −→ ∞ and, synchronization between the master
and the slave systems is achieved.
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Figure 3. Depicts the phase portraits of synchronization of the
master and slave systems.

Figure 4. (a), (b) and (c) are the evolution curves of the states
for the master system(3.2) and the slave system(4.1).
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Figure 5. Approximation of disturbance φ̂i.

Figure 6. Synchronization error for the commensurate orders, (a):
q1 = q2 = q3 = 0.79, (b): q1 = q2 = q3 = 0.82, (c): q1 = q2 = q3 =
0.9.
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