[1] T. M. Atanackovic, A generalized model for the uniaxial isothermal deformation of a viscoelastic body, Acta Mech., 159 (2002), 77– 86.
[2] T. M. Atanackovic, M. Budincevic, and S. Pilipovic, On a fractional distributed-order oscillator, J. Phys. A, Math. Gen., 38 (2005), 6703–6713.
[3] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, New York, Springer, 2006.
[4] M. Caputo and F. Mainardi, Linear models of dissipation in anelastic solids, Rivista. del. Nuovo. Cimento., 1 (1971), 1971–1977.
[5] M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differential Eq., 26 (2) (2009), 448–479.
[6] C. H. Eab and S. C. Lim, Fractional Langevin equations of distributed order, Physical Review E., 83 (2011), 031136.
[7] N. J. Ford, M. L. Morgado, and M. Rebelo, An implicitfinite difference approximation for the solution of the diffusion equation with distributed order in time, Electron. Trans. Numer. Anal., 44 (2015), 289–305.
[8] L. Gaul, P. Klein and S. Kemple, Damping description involving fractional operators, Mech. Syst. Signal. Process., 5 (1991), 81–88.
[9] R. Gorenflo, Y. Luchko, and M. Stojanovic, Fundamental solution of a distributed order timefractional diffusion-wave equation as probability density, Fract. Calc. Appl. Anal., 16(2) (2013), 297–316.
[10] J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng., 167 (1998), 57–68.
[11] J. H. He, Homotopy perturbation technique , Comput. Methods Appl. Mech. Eng., 178(1999), 257–62.
[12] J. H. He, Nonlinear oscillation with fractional derivative and its applications, In: International Conference on Vibrating Engg98, Dalian, (1998), 288–291.
[13] E. Kharazmi, M. Zayernouri, and G. E. Karniadakis, Petrov-Galerkin and spectral collocation methods for distributed order differential equations, SIAM J. Sci. Comput., 39(3) (2017), A1003– A1037.
[14] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[15] A. Lischke, M. Zayernouri, and G. E. Karniadakis, A Petrov-Galerkin spectral method of linear complexity for fractional multiterm ODEs on the half line, SIAM J. Sci. Comput., 39(3) (2017), A922–A946.
[16] C. F. Lorenzo and T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dyn., 29 (2002), 57–98.
[17] Y. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order, Fract. Calc. Appl. Anal., 12 (2009), 409–422.
[18] S. Mashayekhi and M. Razzaghi, Numerical solution of distributed order fractional differential equations by hybrid functions, J. Comput. Phys., 315 (2016), 169–181.
[19] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, CRC Press LLC, 2003.
[20] M. M. Meerschaert, E. Nane, and P. Vellaisamy, Distributed-order fractional diffusions on bounded domains, J. Math. Anal. Appl., 379 (2011), 216–228.
[21] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
[22] F. Mirzaee and S. Alipour, Fractional-order orthogonal Bernstein polynomials for numerical solution of nonlinear fractional partial Volterra integro-differential equations, Math. Meth. Appl. Sci., 42(6) (2019), 1870–1893.
[23] F. Mirzaee and S. Alipour, Numerical solution of nonlinear partial quadratic integrodifferential equations of fractional order via hybrid of blockpulse and parabolic functions, Numer. Methods Partial Differential Eq., 35(3) (2019), 1134–1151.
[24] F. Mirzaee, S. Alipour, and N. Samadyar, A numerical approach for solving weakly singular partial integrodifferential equations via two-dimensional-orthonormal Bernstein polynomials with the convergence analysis, Numer. Methods Partial Differential Eq., 35(2) (2018), 615–637.
[25] S. Momani and K. Al-Khaled, Numerical solutions for systems of fractional differential equations by the decomposition method, Appl. Math. Comput., 162 (2005), 1351–1365.
[26] M. L. Morgado and M. Rebelo, Numerical approximation of distributed order reaction-diffusion equations, J. Comput. Appl. Math., 275 (2015), 216–227.
[27] M. Morgado, M. Rebelo, L. Ferrs, and N. Ford, Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method, Appl. Numer. Math., 114 (2017), 108–123.
[28] M. Naber, Distributed order fractional sub-diffusion, Fractals, 12 (2004), 23–32.
[29] S. Nemati, P. M. Lima, and Y. Ordokhani, Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials, J. Comput. Appl. Math., 242 (2013), 53–69.
[30] Z. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonl. Sci. Numer. Simul., 7 (2006), 27–34.
[31] Z. Odibat and N. Shawagfeh, Generalized Taylors formula, Appl. Math. Comput., 186(1) (2007), 286–293.
[32] P. Rahimkhani and R. Moeti, Numerical solution of the fractional order Duffing-van der Pol oscillator equation by using Bernoulli wavelets collocation method, Int. J. Appl. Comput. Math., 4:59 (2018). doi: 10.1007/s40819-018-0494-x.
[33] P. Rahimkhani and Y. Ordokhani, Generalized fractional-order Bernoulli-Legendre functions: an effective tool for solving two-dimensional fractional optimal control problems, IMA J. Math. Control Inform., 36(1) (2019), 185–212.
[34] P. Rahimkhani and Y. Ordokhani, Numerical solution a class of 2D fractional optimal control problems by using 2D M¨untz-Legendre wavelets, Optim. Control. Appl. Meth., 39(6) (2018), 1916–1934.
[35] P. Rahimkhani, Y. Ordokhani, and E. Babolian, Fractional-order Bernoulli functions and their applications in solving fractional Fredholem-Volterra integro-differential equations, Appl. Numer. Math., 122 (2017), 66–81.
[36] P. Rahimkhani, Y. Ordokhani, and E. Babolian, Fractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions, Comput. Methods Differ. Equ., 5(2) (2017), 117-140.
[37] P. Rahimkhani, Y. Ordokhani, and E. Babolian, M¨untz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations, Numer. Algor., 77(4) (2018), 1283–1305.
[38] N. Samadyar and F. Mirzaee, Numerical scheme for solving singular fractional partial integrodifferential equation via orthonormal Bernoulli polynomials, Int. J. Numer. Model., 32(6) (2019), e2652.
[39] L. Suarez and A. Shokooh, An eigenvector expansion method for the solution of motion containing fractional derivatives, J. Appl. Mech., 64 (1997), 629–735.
[40] M. A. Zaky, A Legendre collocation method for distributed-order fractional optimal control problems, Nonlinear Dyn., 91(4) (2018), 2667–2681.
[41] M. A. Zaky and J. A. Tenreiro Machado, On the formulation and numerical simulation of distributed-order fractional optimal control problems, Commun. Nonlinear Sci. Numer. Simulat., 52 (2017), 177–189.