[1] M. Abbaszadeh, Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation, Appl. Math. Let., 88 (2019), 179-185.
[2] P. Amodio, F. Mazzia, and D. Trigiante, Stability of some boundary value methods for the solution of initial value problems, BIT 33 (1993), 434-451.
[3] M. R. Azizi and A. Khani, Sinc operational matrix method for solving the Bagley-Torvik equation, Comput. Methods Differ. Eq. 5 (2017), 56-66.
[4] L. Brugnano and D. Trigiante, Solving differential problems by multistep initial and boundary value methods, Gordon and Beach Science Publishers, Amsterdam, 1998.
[5] L. Brugnano and D. Trigiante, Stability properties of some BVM methods, Appl. Numer. Math. 13 (1993) 201-304.
[6] L. Brugnano and D. Trigiante,Boundary value methods: the third way between linear multistep and Runge-Kutta methods, Computers Math. Applic. 36 (1998), 269-284.
[7] C. Celik and M. Duman,Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phy. 231 (2012), 1743-1750.
[8] J. Chen, F. Liu, I. Turner, and V. Anh, The fundamental and numerical solutions of the Riesz space-fractional reaction dispersion equation, ANZIAM J.,50 (2008), 45-57.
[9] M. Dehghan and A. Mohebbi,High-order compact boundary value method for the solution of unsteady convection diffusion problems, Math. Comput. Simul. 79 (2008), 683-699.
[10] M. Dehghan and A. Mohebbi, The use of compact boundary value method for the solution of two-dimensional Schrodinger equation, J. Comput. Appli. Math.225 (2009), 124-134.
[11] M. Dehghan and M. Abbaszadeh, An efficient technique based on finite difference/finite element method for solution of two-dimensional space/multi-time fractional Bloch-Torrey equations, Appl. Numer. Math.,131 (2018) 190-206.
[12] M. Dehghan, M. Abbaszadeh, and W. Deng, Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Let.,73 (2017), 120-127.
[13] Z. P. Hao, Z. Z. Sun, and W. R. Cao,A fourth-order approximation of fractional derivatives with its applications, J. Comput. Phys. 281 (2015), 787-805.
[14] Z. Hao, K. Fan, W. Cao, and Z. Sun, A finite difference scheme for semilinear space-fractional diffusion equations with time delay, Appl. Math. Comput. 275 (2016), 238-254.
[15] F. Iavernaro and F. Mazzia, Convergence and stability of multistep methods solving nonlinear initial value problems, SIAM J. Sci. Comput. 18 (1997), 270-285.
[16] H. L. Liao, P. Lyu, and S. Vong, Second-order BDF time approximation for Riesz spacefractional diffusion equations, Int. J. Comput. Math., 95 (2018), 144-158.
[17] F. Liu, V. Anh, and I. Turner, Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math. 166 (2004), 209-219.
[18] A. Mohebbi, On the split-step method for the solution of nonlinear Schrodinger equation with the Riesz spacefractional derivative, Comput. Methods Differ. Eq. 4 (2016), 54-69.
[19] K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order, Academic Press, 1974.
[20] I. Podulbny, Fractional differential equations, New York: Academic Press; 1999.
[21] A. Saadatmandi and M. Dehghan, A tau approach for solution of the space fractional diffusion equation, Comput. Math. Appl. 62 (2011), 1135-1142.
[22] A. Saadatmandi and M. A. Darani, The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications, Comput. Methods Differ. Eq. 5 (2017), 67-87.
[23] H. Wang, C. Zhang, and Y. Zhou, A class of compact boundary value methods applied to semilinear reactiondiffusion equations, Appl. Math. Comput. 325 (2018), 69-81.
[24] H. Zhang and F. Liu, Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term, J. Appli. Math. Informatics, 26 (2008), 1-14.
[25] Y. X. Zhang and H. F. Ding, Improved matrix transform method for the Riesz space fractional reaction dispersion equation, J. Comput. Appl. Math. 260 (2014), 266-280.
[26] Y. Zhou and Z. Luo, A Crank-Nicolson finite difference scheme for the Riesz space fractionalorder parabolic-type sine-Gordon equation, Adv. Di. Equ. (2018), 2018:216.
[27] S. Yang, Finite difference method for Riesz space fractional diffusion equations with delay and a nonlinear source term, J. Nonlinear Sci. Appl., 11 (2018), 17-25.