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Abstract This paper aims to propose a high-order and accurate numerical scheme for the so-

lution of the nonlinear diffusion equation with Riesz space fractional derivative. To
this end, we first discretize the Riesz fractional derivative with a fourth-order finite
difference method, then we apply a boundary value method (BVM) of fourth-order
for the time integration of the resulting system of ordinary differential equations.

The proposed method has a fourth-order of accuracy in both space and time compo-
nents and is unconditionally stable due to the favorable stability property of BVM.
The numerical results are compared with analytical solutions and with those pro-
vided by other methods in the literature. Numerical experiments obtained from

solving several problems including fractional Fisher and fractional parabolic-type
sine-Gordon equations show that the proposed method is an efficient algorithm for
solving such problems and can arrive at the high-precision.
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1. Introduction

In recent years, fractional differential equations have been successfully applied to
modelling the various problems in fields of science and engineering. For instance, the
fractional advection-dispersion equation is used in groundwater hydrology to model
the transport of passive tracers carried by fluid flow in a porous medium and for solute
transport in a subsurface material [17]. In spite of the fact that a considerable amount
of research has been carried out on the theoretical analysis of these equations, analytic
solution of many fractional differential equations cannot be obtained explicitly. So the
numerical solution of fractional differential equations has become a valuable research
topic [1, 3, 11, 12, 18, 22]. This inspires us to search for new and efficient numerical
methods for solving these equations.
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In this paper we investigate the diffusion equation with Riesz space fractional
derivative and nonlinear source term

∂u(x, t)

∂t
= κ

∂αu(x, t)

∂|x|α
+ f(u, x, t), a < x < b, 0 ≤ t ≤ T, (1.1)

with initial condition

u(x, 0) = ϕ(x), a < x < b, (1.2)

and boundary conditions

u(a, t) = u(b, t) = 0, 0 ≤ t ≤ T, (1.3)

where 1 < α < 2, κ > 0 is diffusion coefficient and ∂αu(x,t)
∂|x|α is the Riesz fractional oper-

ator which is the linear combination of the left and right Riemann-Liouville fractional
derivatives, i.e

∂αu(x, t)

∂|x|α
= − 1

2 cos(απ/2)
[aD

α
x + xD

α
b ]u(x, t), (1.4)

where aD
α
x is the left Riemann-Liouville fractional derivative defined as

aD
α
x =

1

Γ(2− α)

∂2

∂x2

x∫
a

(x− ξ)
1−α

u(ξ, t)dξ,

and xD
α
b is the right Riemann-Liouville fractional derivative defined as

xD
α
b =

1

Γ(2− α)

∂2

∂x2

b∫
x

(ξ − x)
1−α

u(ξ, t)dξ.

Also f(u, x, t) is the nonlinear source term that is a smooth function satisfies the
Lipschitz condition

|f(u, x, t)− f(v, x, t)| ≤ L|u− v|,
in which L > 0 is the Lipschitz constant.

The space fractional diffusion equations has many applications in fluid flow in
porous materials, anomalous diffusion transport, chemistry [19, 20]. This equation is
commonly used to model the growth and spreading of biological species.

There are several numerical approximations for the space fractional diffusion equa-
tion. Using the concept of fractional centred derivative, a CrankNicolson scheme of
order O(τ2+h2) is suggested in [7] for linear form of Eq. (1.1). The resulting method
for the Riesz space fractional diffusion equation is shown to be unconditionally stable
and convergent. Another type of second order method is proposed in [16] using the
backward difference formula. A Crank-Nicolson second order finite difference scheme
for the Riesz space fractional-order parabolic-type sine-Gordon equation is given in
[26]. Zhang and Liu [24] proposed an implicit finite difference method of orderO(τ+h)
and proved the unconditional stability and convergence of method. Authors of [8],
have given the fundamental solution of Riesz space fractional diffusion equation and
proosed a finite difference scheme of order O(τ + h2−α). Based on the parameter
spline function and improved matrix transform method, a numerical method is given
in [25] with stability discussion of the difference schemes by the matrix method. A
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second-order finite difference for Riesz space fractional diffusion equations with delay
and a nonlinear source term is given in [27]. In [13], the space-fractional derivatives
are approximated by a fourth order weighted and shifted Grnwald-Letnikov formula
and authors proposed a method of order O(τ2+h4) for Riesz space fractional diffusion
equation. Based on the idea presented in [13], a linearized quasi-compact finite dif-
ference scheme is proposed in [14] for semilinear space-fractional diffusion equations
with a time delay. Also a tau approach for solution of the space fractional diffusion
equation is given in [21].

The aim of this paper is to propose an unconditionally stable numerical method
of order O(τ4 + h4) for the solution of Eq. (1.1). We apply a fourth order finite
difference scheme for space variable and a fourth order boundary value method for
time component. Based on the linear multi-step formulas, boundary value methods
(BVMs) are high-accuracy and unconditionally stable schemes for solving ordinary
differential equations [4, 5, 6]. Unlike Runge-Kutta or other initial value methods,
BVMs achieve the advantage of both high accuracy and good stability [2].

The rest of this paper is organized as follows: In Section 2 we introduce the BVM
for the solution of ordinary and system of ordinary differential equations. In Section
3, we propose the new numerical method for the solution of Eq. (1.1). The results of
numerical experiments are given in Section 4 and we compare them with analytical
solutions and other existing methods for confirming the good accuracy of the proposed
scheme. We conclude this article with a brief conclusive discussion in Section 5.

2. The boundary value methods

For positive integer numbersM and N , let h = b−a
M denotes the step size of spatial

variable, x, and τ = T
N denotes the step size of time variable, t. So we define

xi = a+ ih , i = 0, 1, 2, ...,M,

tk = kτ , k = 0, 1, 2, ..., N.

BVMs constitute a class of methods for the solution of ordinary differential equations
which is the generalization of the linear multi-step methods [4, 6]. These methods have
high order of accuracy and are unconditionally stable methods. We briefly introduce
these methods for the following initial value problem

ẏ(t) = f(t, y(t)), y(0) = y0 , t ≥ 0. (2.1)

In BVMs, at first we assume that the ODE is a boundary value problem and then
impose extra initial and final conditions on the unknowns values of the boundaries.
A k-step BVMs formula for the Eq. (3.5) can be written as

k∑
i=0

αiyi+j = τ
k∑

i=0

βifi+j , , j = 0, 1, ..., N − k, (2.2)

where τ is the step size of time and yi is the approximate value for y(iτ), ti = iτ and
fi = f(yi, ti). The linear multi-step formula (3.6) must be with γ initial and k−γ final
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conditions, i.e. we need the values of y0, y1, ..., yγ−1 and yN−k+γ+1, yN−k+γ+2, ..., yN .
The initial condition in (3.5) provides us with value y0. The extra γ − 1 initial and
k − γ final conditions are of the form

k∑
i=0

α
(j)
i yi = τ

k∑
i=0

β
(j)
i fi, , j = 0, 1, ..., γ − 1, (2.3)

and

k∑
i=0

α
(j)
i yN−i = τ

k∑
i=0

β
(j)
i fN−i, , j = N − k + γ + 1, ..., N. (2.4)

The coefficients αj
i and β

j
i are chosen such that truncation errors for the basic formula

(3.6) and initial and final conditions are of the same order.
We can write the matrix-vector form of the N equations (2.3)-(2.4) as Aeye =
τBefe(te, ye), where te, ye ∈ RN+1, Ae, Be ∈ RN×(N+1) and fe = (f0, f1, ..., fN )T .
The matrix Ae has the following form

Ae =



α1
0 α1

1 . . . α1
k

...
...

...
...

αγ−1
0 αγ−1

1 . . . αγ−1
k

α0 α1 . . . αk

. . .
. . .

. . .
. . .

α0 α1 . . . αk

αN−k+γ+1
0 αN−k+γ+1

1 . . . αN−k+γ+1
k

...
...

...
...

αN
0 αN

1 . . . αN
k


.

Replacing α with β yields the similar statement for Be. If we split the first columns
and partitions Ae = [a0, A] and Be = [b0, B], then we can rewrite this as a system for
the unknowns y ∈ RN and get

Ay = τBf(t, y) + g0, (2.5)

where g0 = −a0y0 + τb0f(t0, y0) contains the initial condition.
In this paper we use a fourth-order BVM approximation of (2.5) which is obtained
by k = 3 and γ = 2 and is as follows [4]

1

12
(yj+3 + 9yj+2 − 9yj+1 − yj) =

τ

2
(fj+2 + fj+1)) +O(τ4). (2.6)
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The additional equations associated with the initial and final conditions are

1

24
(−y3 + 9y2 + 9y1 − 17y0) =

τ

4
(3f1 + f0) +O(τ4), (2.7)

and

1

24
(yN−3 − 9yN−2 − 9yN−1 + 17yN ) =

τ

4
(3fN+1 + fN ) +O(τ4). (2.8)

If we write above approximation in the form (2.5), then A, B, a0 and b0 can be stated
as follows

A =



9/12 9/24 −1/24
−9/12 9/12 1/12
−1/12 −9/12 9/12 1/12

. . .
. . .

. . .
. . .

−1/12 −9/12 9/12 1/12
1/12 −9/24 −9/24 17/24


,

B =


3/4 0
1/2 1/2

. . .
. . .

1/2 1/2
3/4 1/4

 ,

a0 = [− 17
24 ,−

1
12 , 0, . . . , 0]

T , b0 = [ 14 , 0, . . . , 0]
T .

Now we consider a system of ordinary differential equations

Axẏ(t) = Bxy(t) +Ax(f(y(t)) + g(t)), y(0) = y0, t ≥ 0, (2.9)

where y(t) = [y1(t), y2(t), ..., ym(t)]T , f(y(t)) = [f1(y(t)), f2(y(t)), ..., fm(y(t))]T ,
g(t) = [g1(t), g2(t), ..., gm(t)]T , Ax and Bx are m ×m matrices, then we can write
the fourth-order BVM approximation of (2.9) as follows

(A⊗Ax)y = τ(B ⊗Bx)y + τ(B ⊗Ax)(f(y) + g)+

τ(b0 ⊗ (Bxy0 +Axf0 +Axg0))− a0 ⊗Axy0, (2.10)
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where ⊗ is the Kronecker production and

y = [y1(t1), y2(t1), ...., ym(t1), y1(t2), y2(t2), ..., ym(t2), ..., y1(tN ), y2(tN ), ..., ym(tN )]T ,

g = [g1(t1), g2(t1), ...., gm(t1), g1(t2), g2(t2), ..., gm(t2), ..., g1(tN ), g2(tN ), ..., gm(tN )]T ,

f(y) = [f1(y(t1)), f2(y(t1)), ...., fm(y(t1)), f1(y(t2)), f2(y(t2)), ..., fm(y(t2)),

..., f1(y(tN )), f2(y(tN )), ..., fm(y(tN ))]T ,

f0 = [f1(y(t0)), f2(y(t0)), ...., fm(y(t0))]
T ,

g0 = [g1(t0), g2(t0), ..., gm(t0)]
T ,

y0 = [y1(t0), y2(t0), ..., ym(t0)]
T .

3. Proposed numerical scheme

Recently a fourth order quasi-compact difference scheme to Riemann- Liouville
fractional derivatives is proposed in [13]. Due to the relationship between the Riemann-
Liouville fractional derivatives and the Riesz fractional derivative (1.4), we can obtain
a fourth order approximation of the Riesz fractional derivatives. Let δ2x be the second-
order central difference operator, i.e

δ2xu(x) =
u(x− h)− 2u(x) + u(x+ h)

h2
,

and the left and right shifted Grunwald difference quotient operators be

LA
α
h,pu(x) =

1

hα

∞∑
j=0

g
(α)
j u(x− (j − p)h),

RA
α
h,pu(x) =

1

hα

∞∑
j=0

g
(α)
j u(x+ (j − p)h),

(3.1)

respectively, in which p is an integer and

g
(α)
0 = 1, g

(α)
k =

(−1)
k

k!
α(α− 1)...(α− k + 1), k = 1, 2, ...
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Let

Lδ
α
xu(x) = λ1 LA

α
h,1u(x) + λ0 LA

α
h,0u(x) + λ−1 LA

α
h,−1u(x),

Rδ
α
xu(x) = λ1 RA

α
h,1u(x) + λ0 RA

α
h,0u(x) + λ−1 RA

α
h,−1u(x),

(3.2)

where

h > 0, λ1 =
α2 + 3α+ 2

12
, λ0 =

4− α2

6
, λ−1 =

α2 − 3α+ 2

12
.

Using the following quasi-compact operator

Hα
xu(x) =

(
I + dαδ

2
x

)
u(x), dα =

−α2 + α+ 4

24
, (3.3)

where I is the identity operator, authors of [13] derived the following fourth-order
approximations to Riemann-Liouville fractional derivatives.

Lemma 3.1. [13] Let u(x) ∈ L1(R) and u(x) ∈ C4+α(R), where

C4+α(R) =

u |
+∞∫

−∞

(1 + |τ |)4+α |û(τ)| dτ <∞

 ,

in which û(τ) =
+∞∫
−∞

eiτxu(x)dx is the Fourier transformation of u(x). Then we have

Lδ
α
xu(x) = Hα

x (−∞D
α
xu(x)) +O(h4),

Rδ
α
xu(x) = Hα

x

(
xD

α
+∞u(x)

)
+O(h4).

Using Lemma 3.1, we can obtain a fourth-order approximation to Riesz fractional
derivatives. For u(x) ∈ C [a, b] with u(a) = u(b) = 0, making zero-extension of u(x)
such that u(x) is defined on R and regarding to (3.1) and (3.2), we can write

Lδ
α
xu(x) =

1

hα

[ x−a
h ]∑

j=0

w
(α)
j u(x− (j − 1)h),

Rδ
α
xu(x) =

1

hα

[ b−x
h ]∑

j=0

w
(α)
j u(x+ (j − 1)h),

where

w
(α)
0 = λ1g

(α)
0 , w

(α)
1 = λ1g

(α)
1 + λ0g

(α)
0 ,

w
(α)
j = λ1g

(α)
j + λ0g

(α)
j−1 + λ−1g

(α)
j−2, j2.
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Define

δαxu(x) = − 1

cos
(
απ
2

) [Rδαxu(x) + Rδ
α
xu(x)] ,

then from Lemma 3.1 we have

δαxu(x) = Hα
x

(
∂αu(x, t)

∂|x|α

)
+O(h4). (3.4)

Consider the following fractional PDE,

∂u(x, t)

∂t
= κ

∂αu(x, t)

∂|x|α
+ f(u(x, t)) + g(x, t), a < x < b, 0 ≤ t ≤ T. (3.5)

Applying operator Hα
x on both sides of Eq. (3.5) at point (xj , t), gives

Hα
x

∂u(xj , t)

∂t
= κHα

x

∂αu(xj , t)

∂|x|α
+Hα

xf(u(xj , t))+Hα
xg(xj , t), j = 1, 2, ...M−1.

(3.6)

Regarding to (3.4), there exists a series of bounded functions Rj(t) such that

Hα
x

d
dtuj(t) = − κ

hα cos(απ
2 )

[
j+1∑
k=0

w
(α)
k uj−k+1(t) +

M−j+1∑
k=0

w
(α)
k uj+k+1(t)

]
+Hα

x f(uj(t)) +Hα
x gj(t) + h4Rj(t), j = 1, 2, ...M − 1.

(3.7)

where uj(t) = u(xj , t). Using boundary conditions (1.3), we can write (3.7) in the
matrix-vector form

Ax
d

dt
U(t) = κBxU(t) +Axf(U(t)) +AxG(t) + h4R(t), (3.8)

where

U(t) = [u1(t), u2(t), . . . , uM−1(t)]
T
,

f(U(t)) = [f(u1(t)), f(u2(t)), . . . , f(uM−1(t))]
T
,

G(t) = [g1(t), g2(t), . . . , gM−1(t)]
T
,

R(t) = [R1(t),R2(t), . . . ,RM−1(t)]
T
,

Ax = tridiag [dα, 1− 2dα, dα] ,

Bx = toeplitz
[
2w

(α)
1 , w

(α)
0 + w

(α)
2 , w

(α)
3 , w

(α)
4 , . . . , w

(α)
M−1

]
.
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Let y(t) be the approximation of U(t). Neglecting the small term h4R(t) in (3.8), we
obtain the following semi-discretization scheme

Ax
d

dt
y(t) = κBxy(t) +Axf(y(t)) +AxG(t). (3.9)

Using BVM approximation (2.10), we can obtain the solution of (3.9).

Remark 3.2. In a similar manners presented in [15, 23], one can show that the
proposed method is locally stable and convergent.

4. Numerical Results

In this section we present the numerical results of the new method on several test
problems. We tested the accuracy and stability of the method described in this pa-
per by performing the mentioned scheme for different values of time and space step
sizes. We calculated the computational order of the method presented in this article
(denoted by C-order) with the following formula :

C − order =
log( e1e2 )

log(h1

h2
)
,

in which e1 and e2 are errors correspond to grids with mesh size h1 and h2 respectively.
In all computations we put h = τ and report the maximum error in tables. Our
calculations are run in Matlab software and on Intel Core 2 Duo CPU with 2.8 GHz
speed and 2 GB RAM.

4.1. Test problem 1. We consider the following space fractional equation [16]

∂u(x, t)

∂t
=
∂αu(x, t)

∂|x|α
+ 210t3x4(1− x)4 + 27t4Ψ(x, α), (x, t) ∈ (0, 1)× (0, 1],

where

Ψ(x, α) =
1

2 cos(απ/2)
[ψ8(x, α)− 4ψ4(x, α) + 6ψ6(x, α)− 4ψ5(x, α) + ψ4(x, α)],

with ψk(x, α) =
Γ(k+1)

Γ(k+1−α) [x
k−α + (1 − x)k−α]. The exact solution is 28t4x4(1 − x)4.

In Table 1 we compare the results of proposed method in this paper and the results
of [16] for different values of fractional orders. The results of BDF2 method [16] are
presented for 1000 spatial grid points (h = 0.001) while for our proposed method we
put h = τ .

Table 1: Comparison of errors for Test problem 1

Present method Method of [16] with h = 0.001

τ α = 1.2 α = 1.8 α = 1.2 α = 1.8

1/10 7.7477× 10−4 1.9121× 10−3 8.2078× 10−3 4.4906× 10−3

1/20 5.8424× 10−5 1.3206× 10−4 2.1717× 10−3 1.1768× 10−3

1/40 4.0838× 10−6 8.5625× 10−6 5.5796× 10−4 3.0113× 10−4

1/80 2.7261× 10−7 5.3669× 10−7 1.4147× 10−4 7.6346× 10−5

1/160 1.7775× 10−8 3.3057× 10−8 3.5729× 10−5 1.9441× 10−5
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Table 2: Comparison of errors for Test problem 1

Present method Method of [16] with τ = 0.001

h α = 1.2 α = 1.8 α = 1.2 α = 1.8

1/8 1.7453× 10−3 4.4174× 10−3 1.1075× 10−2 2.1003× 10−2

1/16 1.3555× 10−4 3.1500× 10−4 2.6458× 10−3 4.8526× 10−3

1/32 9.6798× 10−6 2.0757× 10−5 6.5515× 10−4 1.1922× 10−4

1/64 6.5381× 10−7 1.3124× 10−6 1.6355× 10−4 2.9688× 10−5

1/128 4.2881× 10−8 8.1187× 10−8 4.1034× 10−5 7.4233× 10−5

Tables 1,2 show that the proposed method has more accurate results in comparison
with the method developed in [16]. In Table 3 we present the error, computational
order and CPU time of method.

Table 3: Error, C-order and CPU time (s) of method for Test problem 1

α = 1.1 α = 1.7

τ Error C-order Error C-order CPU time

1/10 5.9222× 10−4 − 1.7699× 10−3 − 0.004133

1/20 4.5650× 10−5 3.6974 1.2399× 10−4 3.8354 0.012522

1/40 3.2563× 10−6 3.8093 8.1009× 10−6 3.9360 0.112302

1/80 2.2103× 10−7 3.8809 5.0937× 10−7 3.9913 1.123820

1/160 1.4601× 10−8 3.9201 3.1424× 10−8 4.0188 13.62493

As we see from Table 3, the proposed method has approximately fourth order of
accuracy in both space and time components which is compatible with theoretical
ones.

4.2. Test problem 2. We consider the nonlinear space fractional Fisher equation

∂u(x, t)

∂t
=
∂αu(x, t)

∂|x|α
+ u(1− u) + f(x, t),

where

f(x, t) = 3t2 cos(t3)− (sin(t3) + 1)](x− 1)4x4

+[(sin(t3) + 1)(x− 1)4x4]2 + (1 + sin(t3))Ψ(x, α),

The exact solution is (1+sin(t3))x4(1−x)4 and x ∈ (0, 1). Tables 4,5 show the error,
C-order and CPU time of present method for different values of T and α.

Table 4: Error, C-order and CPU time (s) of method for Test problem 2 at T = 0.5

α = 1.3 α = 1.9

h = τ Error C-order Error C-order CPU time

1/8 1.9471× 10−5 − 3.1473× 10−5 − 0.012414

1/16 1.6967× 10−6 3.5205 2.7475× 10−6 3.5179 0.049377

1/32 1.1649× 10−7 3.8645 1.7926× 10−7 3.9380 0.140291

1/64 7.5441× 10−9 3.9487 1.1350× 10−8 3.9813 1.228491

1/128 4.6715× 10−10 4.0134 7.0544× 10−10 4.0080 14.68158
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Table 5: Error, C-order and CPU time (s) of method for Test problem 2 at T = 1

α = 1.3 α = 1.9

h = τ Error C-order Error C-order CPU time

1/8 3.1522× 10−5 − 5.6537× 10−5 − 0.048278

1/16 2.7466× 10−6 3.5206 4.4065× 10−6 3.6815 0.070451

1/32 1.8810× 10−7 3.8681 2.8613× 10−7 3.9449 0.300379

1/64 1.2172× 10−8 3.9499 1.8139× 10−8 3.9795 2.540614

1/128 7.5253× 10−10 4.0157 1.1273× 10−9 4.0082 30.00100

Tables 4,5 show the high accuracy and low CPU time of proposed method. Also the
computational orders are in good agreement with theorotical ones.

4.3. Test problem 3. We consider the nonlinear space fractional parabolic-type
sine-Gordon equation [26]

∂u(x, t)

∂t
=
∂αu(x, t)

∂|x|α
+ sin(u), −5 ≤ x ≤ 5,

u(x, 0) =
4 exp(10x)

(exp(10x) + 1)2
.

This problem does not have exact solution. Figures 1,2 show the approximate solution
of this test problem for different values of α and T with h = τ = 1

40 .

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

=1.1
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Figure 1. Plot of solitary wave solutions of Test problem 3 with
h = τ = 1

40 , α = 1.1 and different values of T .
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Figure 2. Plot of solitary wave solutions of Test problem 3 with
h = τ = 1

40 , α = 1.8 and different values of T .

5. Conclusion

In this paper we proposed a high order numerical method for the solution of nolnin-
ear diffusion equations with Riesz space fractional derivative. To this end, we applied
a fourth-order quasi-compact finite difference approximation for space derivatives and
a boundary value method of fourth-order in temporal direction. The numerical results
are compared with analytical solutions and with those provided by other methods in
the literature to show the high accuracy and efficiency of proposed method. Fol-
lowing the idea presented in [9, 10], the proposed method can be easily extended to
two-dimensional Riesz space fractional diffusion equation.
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