[1] J. Alidousti and M. M. Ghahfarokhi, Stability and bifurcation for time delay fractional predator prey system by incorporating the dispersal of prey, Appl. Math. Modelling., 72 (2019), 385–402.
[2] J. Alidousti and R. K. Ghaziani, Spiking and bursting of a fractional order of the modified FitzHugh-Nagumo neuron model, Math. Mod. Comput. Simul., 9(3) (2017), 390–403.
[3] E. Ahmed, A. EI-Sayed, and H. A. EI-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J. Math. Anal. Appl., 325(1) (2003), 542–553.
[4] M. Bodnar and U. Fory, Periodic dynamics in a model of immune system, Appl. Math., 27 (2000), 113–126.
[5] H. M. Byrne, The effect of time delays on the dynamics of avascular tumor growth, Math. Biosci., 144(2) (1997), 83–117.
[6] R. Caponettoi, Fractional order systems: modeling and control applications, World. Sci., (2010).
[7] A. Carvalho and C. M. Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS, Int. J. Dynam. Control., 5(1) (2017), 168–186.
[8] K. Diethelm, The analysis of fractional differential equations, Springer, (2010).
[9] K. Diethelm, N. J. Ford, and A. D. Freed, Detailed error analysis for a fractional Adams method Analysis, Numer. algorithms., 36(1) (2004), 31–52.
[10] U. Fory, Marchuks model of immune system dynamics with application to tumor growth, Comput. Math. Method. M., 4(1) (2002), 85–93.
[11] M. Galach, Dynamics of the Tumor-Immune System Competition-the Effect of Time Delay, Int. J. Appl. Math. Comput. Sci., 13 (2003), 395–406.
[12] R. Hilfer, Applications of Fractional Calculus in Physics, World. Sci. Publ. Co., Singapore, (2000).
[13] D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37(3) (1998), 235–252.
[14] P. Kumar and O. P. Agrawal, An approximate method for numerical solution of fractional differential equations, Signal. Process., 86(10) (2006), 2602–2610.
[15] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56(2) (1994), 295–321.
[16] C. Li and Y. Ma, Fractional dynamical system and its linearization theorem, Nonlinear. Dynam., 71 (2013), 621–633.
[17] H. Mayer, K. S. Zaenker, and U. An Der Heiden, A basic mathematical model of the immune response, Int. J. Nonlinear. Sci., 5(1) (1995), 155–161.
[18] E. Reyes-Melo, J. Martinez-Vega, C. Guerrero-Salazar, and U. Ortiz-Mendez, Application of fractional calculus to modeling of dielectric relaxation phenomena in polymeric materials, J. Appl. Poly. Sci., 98(2) (2005), 923–935.
[19] K. M. Saad, H. M. Srivastava, and J. F. Gmez-Aguilar, A Fractional Quadratic autocatalysis associated with chemical clock reactions involving linear inhibition, Chaos. Solutions. Fractals., 132 (2020), 109–557.
[20] J. Sabatier, O.P. Agrawal, and J.A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, (2007).
[21] A. Sapora, P. Cornetti, and A. Carpinteri, Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach, Commun. Nonlinear. Sci., 18(1) (2013), 63–74.
[22] R. Yafia, Hopf bifurcation analysis and numerical simulations in an ODE model of the immune system with positive immune response, Nonlinear. Anal. Real. World. Appl., 8(5) (2007), 1359–1369.
[23] R. Yafia, Hopf bifurcation in differential equations with delay for tumor-immune system competition model, SIAM. J. Appl. Math., 67(6) (2007), 1693–1703.
[24] R. Yafia, stability of limit cycle in a delayed model for tumor immune system competition with negative immune response, Discrete. Dyn. Nat. Soc., (2006).