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Abstract The present study aims are to analyze a delay tumor-immune fractional-order system

to describe the rivalry among the immune system and tumor cells. Given that

the dynamics of this system depend on the time delay parameter, we examine the
impact of time delay on this system to attain better compatibility with actuality.

For this purpose, we analytically evaluated the stability of the system’s equilibrium

points. It is shown that Hopf bifurcation occurs in the fractional system when the
delay parameter passes a certain value. Finally, by using numerical simulations,

the analytical results were compared to the numerical results to acquire several
dynamical behaviors of this system.
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1. Introduction

To date, cancer remains as one of the leading causes of fatality in the world; how-
ever, there is no complete information on its formation and elimination mechanism.
When invasive species such as bacteria, viruses, or tumor cells reveal in the body,
the immune system endeavors to detect and exterminate these species. Therefore
modeling the interaction among the immune system and tumor cells, as one of the
most important biological mathematical models, has been highly considered by many
researchers [4, 5, 10, 11, 13, 15, 17]. The Kuznetsov-Taylor’s model presented in [15],
which explains the reaction of effective cells (ECs) to the growth of tumor cells (TCs),
is different from other models because it considers the influence of TCs by ECs and
simultaneously disables ECs. The dimensionless form of Kuznetsov and Taylor model,
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which studied in [11, 22], expressed as follows:
dx

dt
= σ + ωxy − δx,

dy

dt
= αy (1− βy)− xy,

(1.1)

where x and y are population densities of effective cells and tumor cells, respectively.
Moreover σ, δ, α and β are positive parameters and ω is a real number which describe
in [23].

Due to the effect of memory in fractional derivative modeling, the fractional sys-
tems are more suitable for investigating the dynamics of biological models, compared
to the integer-order systems. When a biological system is equipped with fractional
derivative, the influence of memory is considered to the system because this kind of
derivative is non-local. Memory and heredity are intrinsic properties of most biologi-
cal systems, therefore fractional-order differential equations are mainly adapted with
actual phenomena. Thus, studies related to the fractional order models have been
widely noticed because of hereditary characteristics, memory, degrees of freedom and
other benefits of these models. For this reason, there is been a growing trend in the
application of fractional order dynamical systems in various scientific and engineering
fields such as biology, physics, and chemistry [1, 2, 3, 6, 7, 12, 14, 18, 19, 20, 21].

This research seeks to study the fractional state of the system (1.1). By substitut-
ing Caputo fractional derivative with the integer-order derivative in system (1.1) and
considering τ > 0 as time delay parameter, we get the following delayed fractional
system: Dn

∗x(t) = σ + ωx (t− τ) y (t− τ)− δx,

Dn
∗ y(t) = αy (1− βy)− xy,

(1.2)

where 0 < n < 1. For n = 1, system (1.2) studied in [11, 23, 24].
The purpose of this research is to evaluate the stability and complicated dynamics of
system (1.2), with the numerical and analytical methods.

The residuum of the paper is structeded as follows: in section 2, the fundamentals
of fractional calculus will be provided. Section 3, studies the stability of the system’s
equilibrium points and obtain conditions required for the existence of Hopf bifurcation.
The numerical explorations in this study will be presented in Section 4. Finally,
Section 5 summarizes the results obtained in the process.

2. Preliminaries

Definition 2.1. For n ∈ R+, the Riemann-Liouville fractional integral on L1[a, b]
recalls as

Jna f(x) :=
1

Γ(n)

∫ x

a

(x− t)n−1f(t)dt , x ∈ [a, b],

in which Γ(.) is the Eulers gamma function.
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Definition 2.2. For n ∈ R+ and m = dne, the fractional Caputo derivative recalls
as

Dn
∗af(x) := Jm−na f (m)(x) =

1

Γ(m− n)

∫ x

a

(x− t)m−n−1f (m)(t)dt,

which exists for almost everywhere x ∈ [a, b].

Definition 2.3. Consider the following fractional differential system:

Dn
∗ax(t) = f (x (t)) , 0 < n < 1, (2.1)

with initial condition x(0) = x0 where x (t) ∈ Rn, and f : [0,∞)× Rn → Rn.
Assume that f (c) = 0, thus c is defined as an equilibrium point of system (2.1). Let
Df (c) is the linearized matrix at the equilibrium point c. Then c is a hyperbolic
equilibrium point if conditions λ (Df (c)) 6= 0 and | arg (λ (Df (c))) | 6= nπ

2 satisfied
for all eigenvalues λ of Df (c).

Theorem 2.4. [8]
Consider the m-dimensional fractional order system:

Dn
∗ax(t) = Ax (t) , 0 < n < 1,

where A is an arbitrary fixed m×m matrix.
(a) The solution x (t) = 0 of the above system is asymptotically stable, if and only if
| arg(λj)| > nπ

2 satisfied for each eigenvalue λj , (j = 1, 2, . . . ,m) of A .
(b) The solution x (t) = 0 of the above system is stable, if and only if | arg(λj)| ≥ nπ

2
satisfied for all eigenvalues of A and all eigenvalues with | arg(λj)| = nπ

2 have the
identical geometric and algebraic multiplicity.

We memorialize the fractional version of the Hartman-Grobman Theorem as follows:

Theorem 2.5. [16] Let the origin O is a hyperbolic equilibrium point of (2.1), then
in the vicinity of O, the vector field f (x) and its linearization vector field Df (0)x
are topologically equivalent.

We attend that the condition hyperboic equilibrium is required in Theorem 2.5.

Theorem 2.6. (Final Value Theorem). Suppose that L{f(t)} has no singularities in
the closed right half-plane {s ∈ C : Re(s) ≥ 0}, except for possibly a simple pole at
the origin. Then we have the following equality:

lim
t→+∞

f(t) = lim
s→0+

sL{f(t)}.

3. Stability and hopf bifurcation in the fractional system

Consider system (1.2) and suppose that ω > 0. By regarding the following equatings

Dn
∗x(t) = 0, Dn

∗ y(t) = 0,

obviously, that system (1.2) possess at most two non-negative equilibria. This poins
are detected as follows:
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(A): For αδ < σ, system (1.2) has only one positive equilibrium point E0 =(σ
δ
, 0
)

.

(B): For αδ > σ, in addition of E0, there exists a new equilibrium point E1 =
(x1, y1) where

x1 =
−α (βδ − ω) +

√
∆

2ω
, y1 =

α (βδ + ω)−
√

∆

2αβω
,

in which
∆ = α2 (βδ − ω)

2
+ 4αβσω.

At first, we set τ = 0 and demonstrate the stability properties of equilibrium points
of system (1.2) in the following Theorems:

Theorem 3.1. Assume τ = 0, then E0 is locally asymptotically stable if αδ < σ,
otherwise it is a saddle point.

Proof. For τ = 0, the jacobian matrix of system (1.2) evaluated at E0 is given by

J |E0
=

−δ
ωσ

δ

0 α− σ

δ

 ,

the eigenvalues of J |E0
are λ1 = −δ < 0 and λ2 = α − σ

δ
. If αδ < σ then both

eigenvalues λ1 and λ2 are negative real numbers which satisfied | arg(λ1,2)| = π > nπ
2 ,

so E0 is locally asymptotically stable. While for αδ > σ then | arg(λ2)| = 0 < nπ
2 ,

which complet the proof. �

Before we check the stability of E1, let us taking

G1 = ωy1 + α− (δ + 2αβy1 + x1) ,

G2 = ωαy1 + 2αβδy1 + δx1 −
(
2αβωy2

1 + δα
)
.

Theorem 3.2. Suppose τ = 0, if G2 > 0, then E1 is locally asymptotically stable if
one of the following mutually exclusive statements hold:

(i) G1 < 0 and G2
1 − 4G2 ≥ 0.

(ii) G2
1 − 4G2 < 0 and

√∣∣G2
1 − 4G2

∣∣ > tan
(nπ

2

)
G1 (3.1)

Proof. For τ = 0, the jacobian matrix of system (1.2) calculated at E1 derived as

J |E1
=

ωy1 − δ ωx1

−y1 α− 2αβy1 − x1

 .

Let λj , j = 1, 2 be the eigenvalues corresponding to the J |E1 then we achieve:
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tr (J |E1
) = λ1 + λ2 = ωy1 + α− (δ + 2αβy1 + x1) = G1,

det (J |E1
) = λ1λ2 = ωαy1 + 2αβδy1 + δx1 −

(
2αβωy2

1 + δα
)

= G2,

and the characteristic equation computed at E1 is

λ2 −G1λ+G2 = 0,

therefore

λj =
G1 ±

√
G2

1 − 4G2

2
, j = 1, 2,

(i) If G2
1− 4G2 ≥ 0, then λ1 and λ2 are real. Since G2 > 0, if G1 < 0, then λ1 and λ2

are real and negative. Thus | arg(λ1,2)| = π > nπ
2 , which proves the stability of E1.

(ii) From G2
1 − 4G2 < 0, it is evident that λ1 and λ2 are conjugate complex and we

acquire:

λj =
G1 ± i

√∣∣G2
1 − 4G2

∣∣
2

, j = 1, 2. (3.2)

|λ1 − λ1| =
√∣∣G2

1 − 4G2

∣∣. (3.3)

Making use of (3.1) and (3.3), we conclude that∣∣λ1 − λ1

∣∣ > tan
(nπ

2

) (
λ1 + λ1

)
=⇒

∣∣Im (λ1)
∣∣ > tan

(nπ
2

)
(Reλ1) . (3.4)

This ensures that | arg(λ1,2)| > nπ
2 . Thus statement (ii) follows. �

Now, we suppose that τ > 0 and attain sufficient conditions for stability the delay
fractional order system (1.2):

Linearizing system (1.2) at equlibrium point
∗
E =

(
∗
x,
∗
y
)

takes the form:
Dn
∗x(t) = −δx+ ω

∗
yx (t− τ) + ω

∗
xy (t− τ),

Dn
∗ y(t) = −∗yx+

(
α− 2αβ

∗
y − ∗x

)
y,

(3.5)

to investigate the stability of the equlibrium point of system (3.5), we provide the
following Theorem:

Theorem 3.3. The equlibrium point
∗
E =

(
∗
x,
∗
y
)

is asymptotically stable if all roots

of the characteristic equation det (∆ (s)) = 0 have negative real part, in which

∆(s) =

s
n + δ − ω∗ye−sτ −ω∗xe−sτ

∗
y sn −

(
α− 2αβ

∗
y − ∗x

)
 .
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Proof. Assume that X(s) and Y (s) are the Laplace transform of x(t) and y(t), re-
spectively. Utilizing Laplace transform on both sides of system (3.5), yields:

(
sn + δ − ω∗ye−sτ

)
X(s)− ω∗xe−sτY (s) = x(0) +A+B,

∗
yX(s) +

(
sn −

(
α− 2αβ

∗
y − ∗x

))
Y (s) = y(0),

in which

A = −ω∗y
∫ 0

−τ
e−sτx(t)dt, B = −ω∗x

∫ 0

−τ
e−sτy(t)dt.

Thus

s
n + δ − ω∗ye−sτ −ω∗xe−sτ

∗
y sn −

(
α− 2αβ

∗
y − ∗x

)

X(s)

Y (s)

 =

x(0) +A+B

y(0)

 .

(3.6)

Multiplying s on both sides of (3.6) implies

∆(s)

sX(s)

sY (s)

 =

s (x(0) +A+B)

sy(0)

 . (3.7)

If all roots of the characteristic equation det (∆ (s)) = 0 situate in open left half com-
plex plane, (i.e., Re(s) < 0), then for all roots that Re(s) ≥ 0, we have det (∆ (s)) 6= 0.
Since s → 0+, then s (x(0) +A+B) → 0 and sy(0) → 0. Therefore equation (3.7)
has a unique solution (sX(s), sY (s)) when s→ 0+, and

lim
s→0+

sX(s) = 0, lim
s→0+

sY (s) = 0.

From the hypothesis of all roots of the characteristic equation and Theorem 2.6, we
get

lim
t→+∞

x(t) = 0, lim
t→+∞

y(t) = 0.

Thus we proved the stability of the equlibrium point of system (3.5). �

Let us now turn to determine the stability of the equilibrium points by employing
Theorem 3.3.

Theorem 3.4.
(i) If αδ < σ, then E0 is locally asymptotically stable for all τ > 0.

(ii) If αδ > σ, then E0 is unstable for all τ > 0.
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Proof. The linearized system (1.2) at E0 is attained as:
Dn
∗x(t) = ω

σ

δ
y(t− τ)− δx,

Dn
∗ y(t) =

(
α− σ

δ

)
y.

We compute ∆(s) as

∆(s) =


sn + δ −ωσ

δ
e−sτ

0 sn − (α− σ

δ
)

 ,

with the characteristic equation

det (∆ (s)) = (sn + δ)
(
sn −

(
α− σ

δ

))
= 0. (3.8)

(i) If αδ < σ, we have

λ1 = sn1 = −δ < 0,

λ2 = sn2 = α− σ

δ
< 0,

therefore ∣∣ arg (λi)
∣∣ = π >

nπ

2
=⇒

∣∣ arg (λi)
1
n
∣∣ > π

2
,

=⇒
∣∣ arg (si)

∣∣ > π

2
.

Thus all roots of equation (3.8) have negative real parts and according to Theorem
3.3, E0 is locally asymptotically stable for all τ > 0.

(ii) If αδ > σ, we get

λ1 = sn1 = −δ < 0,

λ2 = sn2 = α− σ

δ
> 0,

therefore∣∣ arg (λ1)
∣∣ = π >

nπ

2
=⇒

∣∣ arg (λ1)
1
n
∣∣ > π

2
=⇒

∣∣ arg (s1)
∣∣ > π

2
,

∣∣ arg (λ2)
∣∣ = 0 <

nπ

2
=⇒

∣∣ arg (λ2)
1
n
∣∣ < π

2
=⇒

∣∣ arg (s2)
∣∣ < π

2
.

Thus equation (3.8) has a root with positive real part, which proves (ii). �

Now, we discuss the stability of equilibrium point E1 and by regarding time delay as
the bifurcation parameter gain conditions for occurrence of Hopf bifurcation.

Linearizing system (1.2) refers to the equilibrium point E1 = (x1, y1) yields the fol-
lowing linear system
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 Dn
∗x(t) = −δx+ ωy1x (t− τ) + ωx1y (t− τ),

Dn
∗ y(t) = −y1x+ (α− 2αβy1 − x1) y.

According to Theorem 3.3, ∆(s) is equal to

∆(s) =

s
n + δ − ωy1e

−sτ −ωx1e
−sτ

y1 sn − α+ 2αβy1 + x1

 , (3.9)

by setting

a = δ + αβy1, b = −ωy1, c = ωαy1 (1− 2βy1) , d = αβy1δ,

the associated characteristic equation of (3.9) is

det (∆ (s)) = s2n + asn + (bsn + c) e−sτ + d = 0. (3.10)

Let s = iξ = ξ
(
cos
(
π
2

)
+ i sin

(
π
2

))
is a root of eqution (3.10). By replacing s into

(3.10) and separating the real and imaginary parts we obtain following equations:

ξ2n cos (nπ) + aξn cos
(nπ

2

)
+ bξn cos

(nπ
2

)
cos (ξτ) + bξn sin

(nπ
2

)
sin (ξτ)

+ c cos (ξτ) + d = 0,

ξ2n sin (nπ) + aξn sin
(nπ

2

)
+ bξn sin

(nπ
2

)
cos (ξτ)− bξn cos

(nπ
2

)
sin (ξτ)

(3.11)

− c sin (ξτ) = 0.

By taking

ϕ1 = ξ2n cos (nπ) + aξn cos
(nπ

2

)
+ d,

ϕ2 = ξ2n sin (nπ) + aξn sin
(nπ

2

)
,

ϕ3 = bξn cos
(nπ

2

)
+ c,

ϕ4 = bξn sin
(nπ

2

)
,

equations (3.11) can equivalently be written as ϕ1 + ϕ3 cos (ξτ) + ϕ4 sin (ξτ) = 0,

ϕ2 + ϕ4 cos (ξτ)− ϕ3 sin (ξτ) = 0.
(3.12)
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From (3.12) we derive:

cos (ξτ) = −ϕ1ϕ3 + ϕ2ϕ4

ϕ2
3 + ϕ2

4

, (3.13)

sin (ξτ) =
ϕ2ϕ3 − ϕ1ϕ4

ϕ2
3 + ϕ2

4

. (3.14)

As we know cos2 (ξτ) + sin2 (ξτ) = 1, then by using (3.13) and (3.14), we get

ϕ2
3 + ϕ2

4 = ϕ2
1 + ϕ2

2. (3.15)

Thus by substituting the values of ϕ1, ϕ2, ϕ3, ϕ4 in (3.15) and simplification we get:

h (ξ) = ξ4n +B3ξ
3n +B2ξ

2n +B1ξ
n +B0 = 0, (3.16)

in which

B0 = d2 − c2,

B1 = 2ad cos
(nπ

2

)
− 2cb cos

(nπ
2

)
,

B2 = 2d cos (nπ) + a2 − b2,

B3 = 2a cos
(nπ

2

)
.

Now we express the following Theorem:

Theorem 3.5.
(i) If Bi > 0, i = 0, 1, 2, 3, then equation (3.10) has no root with zero real part for all
τ ≥ 0.

(ii) If Bi > 0, i = 1, 2, 3 and B0 < 0, then equation (3.10) has a pair of purely
imaginary roots ±iξ0 when

τj =
1

ξ0
arccos

(
−ϕ1ϕ3 + ϕ2ϕ4

ϕ2
3 + ϕ2

4

)
+

2jπ

ξ0
, j = 0, 1, 2, . . . (3.17)

where ξ0 is a unique positive zero of equation (3.16).

Proof. (i) From Bi > 0, i = 0, 1, 2, 3, we achieve

h(0) = B0 > 0,

and
h′ (ξ) = 4nξ4n−1 + 3nB3ξ

3n−1 + 2nB2ξ
2n−1 + nB1ξ

n−1 > 0,

so equation (3.16) doesn’t have any real root. Thus equation (3.10) has no purely
imaginary root, which proves (i).

(ii) We know h(0) = B0 < 0, and we conclude that

lim
ξ→+∞

h (ξ) = +∞,

so, equation (3.16) has at least one positive real root. Furthermore

h′(ξ) > 0,
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i.e., h (ξ) is strictly increasing which leads that equation (3.16) has only one positive
real root such as ξ0. So (ξ0, τj) is a root of (3.12), where τj as given in equation (3.17).
Clearly ±iξ0 is a pair of purely imaginary roots of (3.10) when τ = τj , j = 0, 1, 2, ...
. This completes the proof. �

To obtain the conditions for Hopf bifurcation, the following hypothesis is required:

(H)
η3η1 + η4η2

η2
1 + η2

2

6= 0,

where

η1 = 2nξ2n−1 cos

(
(2n− 1)π

2

)
+ naξn−1 cos

(
(n− 1)π

2

)
+ bnξn−1 cos

(
(n− 1)π

2
− ξτ

)
− τbξn cos

(nπ
2
− ξτ

)
− τc cos (ξτ) ,

η2 = 2nξ2n−1 sin

(
(2n− 1)π

2

)
+ naξn−1 sin

(
(n− 1)π

2

)
+ bnξn−1 sin

(
(n− 1)π

2
− ξτ

)
− τbξn sin

(nπ
2
− ξτ

)
+ τc sin (ξτ) ,

η3 = bξn+1 cos

(
(n+ 1)π

2
− ξτ

)
+ cξ sin (ξτ) ,

η4 = bξn+1 sin

(
(n+ 1)π

2
− ξτ

)
+ cξ cos (ξτ) ,

and we indicate the following Theorem:

Theorem 3.6. Let s(τ) = µ(τ) + iξ(τ) is a root of equation (3.10) near τ = τj
verifying µ(τj) = 0, ξ(τj) = ξ0, then

Re

(
ds

dτ

) ∣∣∣
(τ=τ0,ξ=ξ0)

6= 0.

Proof. Taking the derivative of the characteristic equation (3.10) with respect to τ ,
gives:

ds

dτ
=

(
bsn+1 + cs

)
e−sτ

2ns2n−1 + nasn−1 + e−sτ (bnsn−1 − τbsn − τc)
, (3.18)

By substituting s = iξ = ξe
iπ
2 into (3.18) and separating the real and imaginary

parts, we have

ds

dτ
=
η3 + iη4

η1 + iη2
=
η3η1 + η4η2

η2
1 + η2

2

+
η4η1 − η3η2

η2
1 + η2

2

i,

then we deduce that

Re

(
ds

dτ

)
=
η3η1 + η4η2

η2
1 + η2

2

.
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Obviously, due to hypothesis (H) the transversality condition is satisfied. This com-
pletes the proof. �

Theorem 3.7. Under the assumptions a+ b > 0 and c+ d > 0, the following results
hold:

(i) If Bi > 0, i = 0, 1, 2, 3, then the equilibrium point E1 = (x1, y1) is locally asymp-
totically stable for all τ ≥ 0.

(ii) If B0 < 0, Bi > 0, i = 1, 2, 3, then the equilibrium E1 is locally asymptotically
stable for all 0 ≤ τ < τ0.

(iii) If all conditions as given in (ii) hold, then for τ > τ0 the equilibrium E1 is unsta-
ble and system(1.2) undergoes Hopf bifurcation at E1 when τ = τj , j = 0, 1, 2, 3, . . ..

Proof. (i) For τ = 0, sn = λ the characteristic equation (3.10) turn into

λ2 + (a+ b)λ+ (c+ d) = 0, (3.19)

under conditions a + b > 0, c + d > 0 all roots of equation (3.19) have negative
real parts. Hence all roots of equation (3.10) have negative real parts for τ = 0 .
Conclusion (i) of Theorem 3.5 denotes that for all τ ≥ 0, equation (3.10) doesn’t have
any root with zero real part. Thus, all roots of equation (3.10) have negative real
parts for all τ ≥ 0 and E1 is locally asymptotically stable for all τ ≥ 0.

(ii) By substituting τ = 0 and sn = λ in the characteristic equation (3.10), we get
to equation (3.19). By applying the Routh-Hurwitz criterion, all roots of equation
(3.19) have negative real parts if and only if a+ b > 0 and c+ d > 0, i.e.,∣∣ arg (λi)

∣∣ > nπ

2
=⇒

∣∣ arg(λ
1
n
i )
∣∣ > π

2
=⇒

∣∣ arg (si)
∣∣ > π

2
, i = 1, 2.

Therefore all roots of equation (3.10) have negative real parts for τ = 0. From
the conclusion (ii) of Theorem 3.5, the definition of τ0 suggests that all roots of
equation (3.10) have negative real parts for τ ∈ [0, τ0), so equilibrium E1 is locally
asymptotically stable for all 0 ≤ τ < τ0.

(iii) Theorem 3.6, reveals that equation (3.10) has at least a pair of roots with positive
real parts when τ > τ0. Also implies that the condition of crossing the imaginary axis
occurs. Thus under the given assumptions the Hopf bifurcation occurs at τ = τj ,
j = 0, 1, 2, 3, ... . �

4. Numerical results

In this section, we carry out numerical simulations to elucidate the effects of time
delay and confirm theoretical results. For numerical simulation, we apply the frac-
tional Adams-Bashforth-Moulton method [9]. It is shown that for the following system

{
Dn
∗0x(t) = f(t, x(t)),

x(0) = x0.
(4.1)
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The fractional variant of the one-step Adams-Moulton method is given by:

xi+1 =

dne−1∑
j=0

tji+1

j!
x

(j)
0 +

hn

Γ(n+ 2)

i∑
j=0

aj,i+1f(tj , xj) +
hn

Γ(n+ 2)
f(ti+1, x

P
i+1),

in which

aj,i+1 =

{
in+1 − (i− n)(i+ 1)n, j = 0

(i− j + 2)n+1 + (i− j)n+1 − 2(i− j + 1)n+1, 1 ≤ j ≤ i,

and xPi+1 is determined by the one-step Adams-Bashforth method, i.e.,

xPi+1 =

dne−1∑
j=0

tji+1

j!
x

(j)
0 +

1

Γ(n)

i∑
j=0

bj,i+1f(tj , xj),

where

bj,i+1 =
hn

n

(
(i+ 1− j)n − (i− j)n

)
.

In Figures 1 and 2, numerical simulations are shown for τ = 0.
In Figure 1, the phase portrait of system (1.2) plotted for the parameter values ofα =
1.636, β = 0.002, σ = 0.7, δ = 0.3747, ω = 0.04, n = 0.97 and different
initial values x0 and y0. In this case we obtain αδ = 0.6130 < σ = 0.7. Thus
according to the Theorem 3.1, E0 = (1.8682, 0) is locally asymptotically stable.
In Figure 2, numerical simulations are performed for the parameter values of α =
1.636, β = 0.002, σ = 0.1181, δ = 0.3747, ω = 0.04 and n = 0.97. In this case we
obtain G1 = −0.0979 < 0, G2 = 0.4875 > 0, therefore

G2
1 − 4G2 = −1.9403 < 0,

√∣∣G2
1 − 4G2

∣∣ = 1.3930 > tan
(nπ

2

)
G1 = −2.0770.

Thus, according to the conclusion (ii) of Theorem 3.2, E1 = (1.6113, 7.5352) is locally
asymptotically stable.

Now, we fix the parameter values and initial values as

α = 1.636, β = 0.002, σ = 0.1181, δ = 0.3747, ω = 0.04, x0 = 1.5, y0 = 7.5. (4.2)

and varying the fractional order n and the delay parameter τ .
By varing the fractional order in the range 0.5 ≤ n ≤ 1, we can calculate the corre-
sponding ξ0 and τ0 which are written in Table 1. Table 1 and Figure 3 illustrate that
the onset of Hopf bifurcation befalls as the fractional order increases.
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Figure 1. Phase portrait of system (1.2) for α = 1.636, β =
0.002, σ = 0.7, δ = 0.3747, ω = 0.04 and n = 0.97. for τ = 0,
E0 = (1.8682, 0) is locally asymptotically stable.

(a) (b)

Figure 2. Phase portrait of system (1.2) for α = 1.636, β =
0.002, σ = 0.1181, δ = 0.3747, ω = 0.04 and n = 0.97. for
τ = 0, E1 = (1.6113, 7.5352) is locally asymptotically stable.

In Figure 4 and 5, numerical simulations are shown for n = 0.97. In this case
B0 = −0.2286 < 0, B1 = 0.0139 > 0, B2 = 0.0502 > 0, B3 = 0.0376 > 0. By
Theorem 3.5, equation (3.10) has a pair of purely imaginary roots given by ±0.6492i.
Therefore we can get τ0 = 0.3669 and

Re

(
ds

dτ

) ∣∣∣
(τ0=0.3669,ξ=0.6492)

= 0.1882 6= 0.
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Table 1. The effects of n on ξ0 and τ0 for system (1.2).

Fractional order n Critical frequency ξ0 Bifurcation point τ0
0.5 0.2277 7.3999
0.55 0.2734 5.6160
0.6 0.3196 4.3335
0.65 0.3659 3.3711
0.7 0.4119 2.6234
0.75 0.4576 2.0257
0.8 0.5027 1.5362
0.85 0.5470 1.1269
0.9 0.5903 0.7783
0.95 0.6326 0.4768
0.97 0.6492 0.3669
1 0.6736 0.2119

Figure 3. The influence of n depending on τ for system (1.2).

In addition a + b = 0.098 > 0 and c + d = 0.4874 > 0, so according to Theorem 3.7
system (1.2) undergoes a Hopf bifurcation at E1 = (1.6113, 7.5352) when τ0 = 0.3669.

In Figure 4, for τ = 0.3 < τ0 = 0.3669, E1 = (1.6113, 7.5352) is locally asymptot-
ically stable. In Figure 5, by increasing τ to τ = 0.4 > τ0 = 0.3669, the equilibrium
E1 = (1.6113, 7.5352) losses its stability and a limit cycle appears around E1 (see
Figure 5).

For n = 0.95, we conclude B0 = −0.2286 < 0, B1 = 0.0232 > 0, B2 = 0.0504 >
0, B3 = 0.0627 > 0. By Theorem 3.5, equation (3.10) has a pair of purely imaginary
roots given by ±0.6326i. Therefore we can get τ0 = 0.4768 and

Re

(
ds

dτ

) ∣∣∣
(τ0=0.4768,ξ=0.6326)

= 0.1755 6= 0.
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(a) (b)

Figure 4. Phase portrait of system (1.2) for α = 1.636, β =
0.002, σ = 0.1181, δ = 0.3747, ω = 0.04 and n = 0.97. for
τ = 0.3 < τ0 = 0.3669, E1 = (1.6113, 7.5352) is locally asymptoti-
cally stable.

(a) (b)

Figure 5. Phase portrait of system (1.2) for α = 1.636, β =
0.002, σ = 0.1181, δ = 0.3747, ω = 0.04 and n = 0.97. For
τ = 0.4 > τ0 = 0.3669, E1 = (1.6113, 7.5352) is unstable and a limit
cycle emerges around E1.

In addition a+ b = 0.098 > 0 and c+ d = 0.4874 > 0, so according to Theorem 3.7
system (1.2) undergoes a Hopf bifurcation at E1 = (1.6113, 7.5352) when τ0 = 0.4768.
Thus for τ = 0.15, 0.3 < τ0 = 0.4768, the equilibrium E1 = (1.6113, 7.5352) is locally
asymptotically stable which depicted in Figures 6 and 7. When n = 1, we can derive
the values ξ0 = 0.6736 and τ0 = 0.2119. Thus for τ = 0.15 < τ0 = 0.2119, the
equilibrium E1 = (1.6113, 7.5352) is locally asymptotically stable, see Figure 6. Also,
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(a) (b)

Figure 6. Phase portrait of system (1.2) for α = 1.636, β =
0.002, σ = 0.1181, δ = 0.3747, ω = 0.04 and τ = 0.15.
E1 = (1.6113, 7.5352) is locally asymptotically stable. (a) for n = 1,
(b) for n = 0.95.

in Figure 7, we observe that for τ = 0.3 > τ0 = 0.2119, E1 is unstable.

(a) (b)

Figure 7. Phase portrait of system (1.2) for α = 1.636, β =
0.002, σ = 0.1181, δ = 0.3747, ω = 0.04 and τ = 0.3. (a) for
n = 1, E1 = (1.6113, 7.5352) is unstable and system has a periodic
solution, (b) for n = 0.95, E1 is locally asymptotically stable.
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In Figures 6 and 7, we compare system (1.2) in the fractional and classical cases.
Our obtained results show that the fractional system is more stable than the classical
case.

5. conclution

The present study introduced a tumor-immune fractional-order system along with
the time delay parameter, in order to describe the interaction betwixt effective cells
and tumor cells. In this paper, we investigated the stability of the system’s equilibrium
points under the impact of the delay and proved the occurrence of the Hopf bifurcation
in this system, by selecting τ as the bifurcation parameter. Finally, we conducted
numerical simulations for specified values of the parameters, in which the results
were fully consistent with the obtained theoretical results. It was observed that the
fractional-order and the time delay play an important role in the stability of the
system. In addition, when the parameter τ becomes larger than the specified value,
the system’s equilibrium point loses its stability, resulting in creating more complex
dynamical behaviors of the system, including limit cycle and oscillating behaviors.
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