[1] W.X. Ma, Travelling wave solutions to a seventh order generalized KdV equation, Phys.
Lett. A. 180 (1993) 221 224:
[2] W. Mal iet, Solitary wave solutions of nonlinear wave equations, Amer. J. Phys.
60(7) (1992) 650 654:
[3] A.H. Khater, W. Mal iet, D.K. Callebaut and E.S. Kamel, The tanh method, a simple
transformation and exact analytical solutions for nonlinear reactiondi usion equations,
Chaos Solitons Fractals 14(3) (2002) 513 522:
[4] A.M. Wazwaz, Two reliable methods for solving variants of the KdV equation with
compact and noncompact structures. Chaos Solitons Fractals, 28(2) (2006) 454 462:
[5] W. X. Ma and B. Fuchssteiner, Explicit and exact solutions to a Kolmogorov- Petrovskii-
Piskunov equation, Int. J. Non-Linear Mech. 31 (1996) 329-338.
[6] S.A. El-Wakil and M.A. Abdou , New exact travelling wave solutions using modi ed
extended tanh-function method, Chaos Solitons Fractals, 31(4) (2007) 840-852.
[7] E. Fan, Extended tanh-function method and its applications to nonlinear equations,
Phys. Lett. A. 277(4 -5) (2000) 212 -218.
[8] A.M.Wazwaz, The tanh-function method: Solitons and periodic solutions for the Dodd-
Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations, Chaos Solitons and
Fractals 25(1) (2005) 55-63.
[9] T.C. Xia ,B. Li and H.Q. Zhang, New explicit and exact solutions for the Nizhnik-
Novikov-Vesselov equation, Appl. Math. E-Notes 1, (2001) 139-142.
[10] A.M. Wazwaz, The sine-cosine method for obtaining solutions with compact and non-
compact structures, Appl. Math. Comput. 159(2) (2004) 559-576:
[11] A.M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math.
Comput. Modelling, 40(5-6) (2004) 499-508:
[12] E. Yusufoglu and A. Bekir, Solitons and periodic solutions of coupled nonlinear evolution
equations by using Sine-Cosine method, Internat. J. Comput. Math. 83(12) (2006) 915-
924:
[13] M. Inc and M. Ergut, Periodic wave solutions for the generalized shallow water
wave equation by the improved Jacobi elliptic function method, Appl. Math. E-Notes
5 (2005) 89 96:
[14] Zhang Sheng, The periodic wave solutions for the (2 + 1) dimensional Konopelchenko-
Dubrovsky equations, Chaos Solitons Fractals, 30 (2006) 1213-1220.
[15] W. X. Ma and J.-H. Lee, A transformed rational function method and exact solutions to
the (3+1)-dimensional Jimbo-Miwa equation, Chaos Solitons Fractals, 42 (2009) 1356-
1363
[16] Z.S Feng, X.H Wang, The rst integral method to the two-dimensional Burgers-KdV
equation, Phys. Lett. A. 308 (2002) 173-178.
[17] T.R. Ding and C.Z. Li, Ordinary di erential equations. Peking University Press, Peking,
(1996).
[18] Z.S. Feng, X.H Wang, The rst integral method to the two-dimensional Burgers-KdV
equation, Phys. Lett. A. 308 (2002) 173 - 178.
[19] K.R. Raslan, The rst integral method for solving some important nonlinear partial
di erential equations, Nonlinear Dynam 53 (2008) 281:
[20] D.J. Kaup, A higher order water wave equation and method for solving it, Progress of
Theoretical physics 54 (1975) 396 - 408.
[21] Mingliang Wang, Jinliang Zhang, Xiangzheng Li, Application of the (G0
G )-expansion
to travelling wave solutions of the Broer-Kaup and the approximate long water wave
equations, Appl. Math. Comput. 206 (2008) 321 - 326:
[22] G.B. Whitham, Variational methods and application to water waves, Proceedings of the
Royal Society of London Series A 299 (1967) 6-25:
[23] L.J.F. Broer, Approximate equations for long water waves, Applied Scienti c Research
31 (1975) 377-395.