Lie symmetry analysis for Kawahara-KdV equations

Document Type : Research Paper

Authors

University of Bonab

Abstract

We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.

Keywords


[1] G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to
Partial Di erential Equations, Springer Science Business Media, LLC (2010).
[2] G. W. Bluman and S. Kumei, Symmetries and Di erential Equations, Springer-Verlag,
World Publishing Corp., (1989).
[3] B. J. Cantwell, Introduction to Symmetry Analysis, Cambridge University Press, (2002).
[4] W. Gang-Wei, L. Xi-Qiang and Z. Ying-Yuan, Lie Symmetry Analysis and Invariant
Solutions of the Generalized Fifth-order KdV Equation with Variable Coecients, J. Appl.
Math. Informatics Vol. 31 (2013), No. 1-2, pp. 229-239.
[5] N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Di erential Equations,
Wiley, Chichester, (1999).
[6] N. H. Ibragimov, Invariant Lagrangians and a New Method of Integration of Nonlinear
Equations, J. Math. Anal. Appl. 304 (2005) 212-235.
[7] N. H. Ibragimov and S.V. Meleshko, A solution to the Problem of Invariants for Parabolic
Equations, Commun Nonlinear Sci Numer Simulat 14. (2009) 2551-2558.
[8] N. H. Ibragimov, Symmetries, Lagrangian and Conservation Laws for the Maxwell Equa-
tions, Acta. Appl. Math. 105 (2009) 157-187.
[9] C. M. Khalique and K. R. Adem, Exact Solution of the (2+1)-Dimensional Zakharov-
Kuznetsov Modi ed Equal Width Equation Using Lie Group Analysis, Computer Modelling.
54 (2011) 184-189.
[10] H. Liu, J. Li, L. Liu and Y. Wei, Group Classi cations, Optimal Systems and Exact
Solutions to the Generalized Thomas Equations, J. Math. Anal. Appl. 383 (2011) 400-408.
[11] H. Liu and J. Li, Lie Symmetry Analysis and Exact Solutions for the Extended mKdV
Equation, Acta Appl Math. 109 (2010) 1107-1119.
[12] F. Natali, A Note on the Stability for Kawahara-KdV Type Equations, Lett. 23
(2010)591-596.
[13] M. C. Nucci, P. G. L. Leach and K. Andriopoulos, Lie Symmetries, Quantisation and
c-Isochronous Nonlinear Oscillators, J. Math. Anal. Appl. 319 (2006) 357-368.
[14] M. C. Nucci, Nonclassical Symmetries and Backlund Transformations, J. Math. Anal.
Appl. 178 (1993) 294-300.
[15] M. C. Nucci, Iterations of the Nonclassical Symmetries Method and Conditional
LieBacklund Symmetries, J. Phys. A: Math. Gen. 29 (1996) 8117-8122.
[16] P. J. Olver, Application of Lie Groups to Di erential Equations, New York: Springer-
Verlag; (1993).
[17] V. Torrisi and M. C. Nucci, Application of Lie Group Analysis to a Mathematical Model
which Describes HIV Transmission, in: The Geometrical Study of Di erential Equations,
in: J. A. Leslie, T. P. Robart (Eds.), Contemp. Math., vol. 285 Amer. Math. Soc., Provi-
dence, RI, (2001) 11-20.
[18] J. Zhang, Y. Li, Symmetries and First Integrals of Di erential Equations, Acta. Appl.
Math. 103 (2008) 147-159.