Lie symmetry analysis for Kawahara-KdV equations

Document Type : Research Paper


University of Bonab


We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.


[1] G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to
Partial Di erential Equations, Springer Science Business Media, LLC (2010).
[2] G. W. Bluman and S. Kumei, Symmetries and Di erential Equations, Springer-Verlag,
World Publishing Corp., (1989).
[3] B. J. Cantwell, Introduction to Symmetry Analysis, Cambridge University Press, (2002).
[4] W. Gang-Wei, L. Xi-Qiang and Z. Ying-Yuan, Lie Symmetry Analysis and Invariant
Solutions of the Generalized Fifth-order KdV Equation with Variable Coecients, J. Appl.
Math. Informatics Vol. 31 (2013), No. 1-2, pp. 229-239.
[5] N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Di erential Equations,
Wiley, Chichester, (1999).
[6] N. H. Ibragimov, Invariant Lagrangians and a New Method of Integration of Nonlinear
Equations, J. Math. Anal. Appl. 304 (2005) 212-235.
[7] N. H. Ibragimov and S.V. Meleshko, A solution to the Problem of Invariants for Parabolic
Equations, Commun Nonlinear Sci Numer Simulat 14. (2009) 2551-2558.
[8] N. H. Ibragimov, Symmetries, Lagrangian and Conservation Laws for the Maxwell Equa-
tions, Acta. Appl. Math. 105 (2009) 157-187.
[9] C. M. Khalique and K. R. Adem, Exact Solution of the (2+1)-Dimensional Zakharov-
Kuznetsov Modi ed Equal Width Equation Using Lie Group Analysis, Computer Modelling.
54 (2011) 184-189.
[10] H. Liu, J. Li, L. Liu and Y. Wei, Group Classi cations, Optimal Systems and Exact
Solutions to the Generalized Thomas Equations, J. Math. Anal. Appl. 383 (2011) 400-408.
[11] H. Liu and J. Li, Lie Symmetry Analysis and Exact Solutions for the Extended mKdV
Equation, Acta Appl Math. 109 (2010) 1107-1119.
[12] F. Natali, A Note on the Stability for Kawahara-KdV Type Equations, Lett. 23
[13] M. C. Nucci, P. G. L. Leach and K. Andriopoulos, Lie Symmetries, Quantisation and
c-Isochronous Nonlinear Oscillators, J. Math. Anal. Appl. 319 (2006) 357-368.
[14] M. C. Nucci, Nonclassical Symmetries and Backlund Transformations, J. Math. Anal.
Appl. 178 (1993) 294-300.
[15] M. C. Nucci, Iterations of the Nonclassical Symmetries Method and Conditional
LieBacklund Symmetries, J. Phys. A: Math. Gen. 29 (1996) 8117-8122.
[16] P. J. Olver, Application of Lie Groups to Di erential Equations, New York: Springer-
Verlag; (1993).
[17] V. Torrisi and M. C. Nucci, Application of Lie Group Analysis to a Mathematical Model
which Describes HIV Transmission, in: The Geometrical Study of Di erential Equations,
in: J. A. Leslie, T. P. Robart (Eds.), Contemp. Math., vol. 285 Amer. Math. Soc., Provi-
dence, RI, (2001) 11-20.
[18] J. Zhang, Y. Li, Symmetries and First Integrals of Di erential Equations, Acta. Appl.
Math. 103 (2008) 147-159.