Inverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems

Document Type : Research Paper


Tabriz Azad University


In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results  how that the simplicity and efficiency of this method.


[1] S. Abbasbandy, A. Shirzadi, Homotopy analysis method for multiple solutions of the fractional
Sturm-Liouville problems, Numer Algor 54 (2010), 521-532.
[2] Q.M. Al-Mdallal, An efficient method for solving fractional Sturm-Liouville problems, Chaos
Soluitions Fractals 40 (2009), 138-189.
[3] A.M. Cohen, Numerical method for Laplace transform inversion, springer, New York, 2007.
[4] G.M. Mittag-Leffler, Sur la nouvelle fonction Eα(x), Comptes Rendusdel Academie des Sciences
SerieII Paris 137 (1903), 554-558.
[5] P. Humbert and R.P. Agarwal, Surlafonction de Mittag-Leffler et quelques-unes de ses generalisations,
Bulletin des Sciences Mathematiques SeriesII 77 (1953), 180-185.
[6] K.B. Oldham and j. Spanier, The Fractional Calculus, Academic, New York, 1974.
[7] K.S. Miller and B Ross, An introduction to the fractional calculus and fractional differential
equations, John Wiley and Sons, New York, 1993.
[8] I. Podlubny, Fractional differential equations, Academic, New York, 1999.
[9] SG. Samko, AA. Kilbas, and OI. Marichev, Fractional integrals and derivatives, Berlin: Gorden
and Breach, 1993.
[10] H. Sheng, Y. Li, and Y. Chen, Application of numerical inverse Laplace transform algorithms
in fractional calculus, Journal of the Franklin Institute 348 (2011), 315-330.