[1] Y. Chalco-Cano, J. Nieto, A. Ouahab and H. Roman-Flores, Solution set for fractional differential equations with Riemann-Liouville derivative. Fractional Calculus and Applied Analysis, 16(3) (2013) 682-694.
[2] Y. F. Cheng and T. Q. Dai, Exact solutions of the Klein-Gordon equation with a ring-shaped modified kratzer potential. Chinese J. Phys., 45 (2007) 480-487.
[3] S. Dong, S. H. Dong, H. Bahlouli and V. B. Bezzerra, An algebraic method for the analytical solutions of the Klein-Gordon equation for any angular momentum for some diatomic potentials. Int. J. Mod. Phys E, 20 (2011) 55-68.
[4] K. A. Gepreel and M. S. Mohamed, Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation. Chinese physics B, 22(1) (2013) 010201.
[5] A. K. Golmankhaneh, A. K. Golmankhaneh, D. Baleanu, On nonlinear fractional Klein-Gordon equation. Signal Processing, 91 (2011) 446-451.
[6] I. Podlubny, Fractional differential equations. Academic Press, San Diego, Calif, USA, 1999.
[7] W. Liu and K. Chen, The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations. Pramana J. Phys, 81(2013) 377-384.
[8] Y. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnamica, 24 (1999) 207-233.
[9] S. Samko, A. Kilbas and O. Marichev, Fractional integrals and derivatives: Theory and applications. Gordon and Breach Sci. Publishers, Yverdon, Switzerland, 1993.
[10] V. Uchaikin, Method of fractional derivatives. Artishok-Press, Ulyanovsk, Russia, 2008.
[11] Q. F. Wang and D. Cheng, Numerical solution of damped nonlinear Klein-Gordon equations using variational method and finite element approach. Appl. Math. Comput., 162 (2005) 381-401.
[12] E. Yusufoglu, Variational iteration method for construction of some compact and noncompact structures of Klein-Gordon equations. International Journal of Nonlinear Sciences and Numerical Simulation, 8 (2007) 153-158.
[13] X. J. Yang, H. M. Srivastava, J. -H. He and D. Baleanu, Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Physics Letters A, 377(28) (2013) 1696-1700.
[14] L. Zhao and W. Deng, Jacobian-predictor-corrector approach for fractional differential equations. Advances in Computational Mathematics, 40(1) (2014) 137-165.
[15] M. Znojil, Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation. J.Phys. A: Math. Gen., 37 (2004) 9557-9571.