[1] A. Mohebbi, M. Dehaghan, High order compact solution of the one dimensional lin-
ear hyperbolic equation, Numerical method for partial differential equations, 24 (2008)
11221135.
[2] F. Gao, C. Chi, Unconditionally stable difference scheme for a one-space dimensional
linear hyperbolic equation, Applied Mathematics and Computation 187 (2007) 12721276.
[3] A. Saadatmandi, M. Dehghan, Numerical solution of hyperbolic telegraph equation
using the Chebyshev Tau method, Numer. Methods Partial Differential Equations 26
(1) (2010) 239-252.
[4] S.A. Yousefi, Legendre multi wavelet Galerkin method for solving the hyperbolic
telegraph equation, Numerical Method for Partial Differential Equations, (2008).
doi:10.1002/num.
[5] M. Dehghan, A. Ghesmati, Solution of the second-order one-dimensional hyperbolic
telegraph equation by using the dual reciprocity boundary integral equation (DRBIE)
method, Engineering Analysis with Boundary Elements 34 (2010) 5159.
[6] S. Das, P.K. Gupta, Homotopy analysis method for solving fractional hyperbolic par-
tial differential equations, International Journal of Computer Mathematics 88 (2011)
578588.
[7] M.A. Abdou, Adomian decomposition method for solving the telegraph equation in
charged particle transport, J. Quant. Spectrosc. Radiat. Transfer 95 (2005) 407-414.
[8] M. Lakestani, B. N. Saray, Numerical solution of telegraph equation using interpolating
scaling functions, Computers Mathematics with Applications, 60(2010) 1964-1972.
[9] R.K. Mohanty, An unconditionally stable difference scheme for the one-space dimen-
sional linear hyperbolic equation, Appl. Math. Lett. 17 (2004) 101-105.
[10] R.K. Mohanty, An unconditionally stable finite difference formula for a linear second
order one space dimensional hyperbolic equation with variable coefficients, Appl. Math.
Comput. 165 (2005) 229-236.
[11] L. Lapidus, G.F. Pinder, Numerical Solution of Partial Differential Equations in Science
and Engineering, Wiley, New York, 1982.
[12] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs,
Communications in Nonlinear Science and Numerical Simulation 14 (2009) 674684.
[13] A. Borhanifar, Reza Abazari, An unconditionally stable parallel difference scheme for
telegraph equation scheme for telegraph equation, Math. Probl. Eng. (2009) Article ID
969610
[14] M. Dehghan, A. Shokri, A numerical method for solving the hyperbolic telegraph equa-
tion, Numer. Methods Partial Differential Equations 24 (2008) 10801093.
[15] M. Dehghan, M. Lakestani, The use of Chebyshev cardinal functions for solution of the
second-order one-dimensional telegraph equation, Numer. Methods Partial Differential
Equations 25 (2009) 931938.
[16] J. Biazar, M. Eslami, Analytic solution for Telegraph equation by differential transform
method, Physics Letters A, 374(29)(2010) 2904-2906.
[17] L.N. Trefethen, Spectral methods in MATLAB, SIAM, Philadelphia(2000).
[18] W.S. Don and A. Solomonoff, Accuracy and speed in computing the Chebyshev collo-
cation derivative, SIAM J. of Sci. Coput., 16 No. 4(1995) 1253-1268.
[19] C. Canuto ,A. Quarteroni, M.Y. Hussaini and T. Zang, Spectral method in fluied me-
chanics, Springer-Verlag, New York (1988).
[20] J.P. Boyd, Chebyshev and Fourier spectral methods, Lecture notes in engineering, 49,
Springer-verlag, Berlin(1989).
[21] R. Baltensperger and M.R. Trummer, Spectral differencing with a twist, SIAM J. of
Sci. Comp., 24,no. 5(2003),1465-1487.
[22] R. Baltensperger and J.P. Berrut, The errors in calculating the pseudospectral differen-
tiation matrices for Chebyshev-Gauss-Lobatto point, Comput. Math. Appl., 37(1999),41-48.