$L^{\ell}-$Asymptotic properties of nonlinear Sturm-Liouville problems‎

Document Type : Research Paper

Authors

Department of Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran.

Abstract

In this paper‎, ‎a nonlinear eigenvalue problem consisting of nonlinear Sturm-Liouville equation‎
‎\begin{eqnarray*}‎
‎-y''-‎ ‎q(x)y= \lambda q^{-1}(x) y^{r}‎
‎\end{eqnarray*}‎
‎with Dirichlet boundary conditions on the interval $(-1/2‎ , ‎1/2)$ is investigated‎, ‎where $\lambda >0$ is the eigenparameter‎. ‎We provide a simple scheme to obtain the asymptotic behavior of $L^{\ell}-$bifurcation curve $\lambda=\lambda_{\ell}(\gamma)$ as $\gamma\longrightarrow 0$‎, ‎where $\gamma=|| y_{\lambda}||_{\ell}$‎, ‎$\ell \geq 1$‎, ‎and $y_{\lambda}$ is the solution of Dirichlet problem associated with $\lambda$‎.

Keywords

Main Subjects



Articles in Press, Accepted Manuscript
Available Online from 27 April 2025
  • Receive Date: 06 December 2024
  • Revise Date: 09 April 2025
  • Accept Date: 22 April 2025