In this paper, a nonlinear eigenvalue problem consisting of nonlinear Sturm-Liouville equation \begin{eqnarray*} -y''- q(x)y= \lambda q^{-1}(x) y^{r} \end{eqnarray*} with Dirichlet boundary conditions on the interval $(-1/2 , 1/2)$ is investigated, where $\lambda >0$ is the eigenparameter. We provide a simple scheme to obtain the asymptotic behavior of $L^{\ell}-$bifurcation curve $\lambda=\lambda_{\ell}(\gamma)$ as $\gamma\longrightarrow 0$, where $\gamma=|| y_{\lambda}||_{\ell}$, $\ell \geq 1$, and $y_{\lambda}$ is the solution of Dirichlet problem associated with $\lambda$.
Kiyaee, F. and Mosazadeh, S. (2025). $L^{\ell}-$Asymptotic properties of nonlinear Sturm-Liouville problems. Computational Methods for Differential Equations, (), -. doi: 10.22034/cmde.2025.64894.2957
MLA
Kiyaee, F. , and Mosazadeh, S. . "$L^{\ell}-$Asymptotic properties of nonlinear Sturm-Liouville problems", Computational Methods for Differential Equations, , , 2025, -. doi: 10.22034/cmde.2025.64894.2957
HARVARD
Kiyaee, F., Mosazadeh, S. (2025). '$L^{\ell}-$Asymptotic properties of nonlinear Sturm-Liouville problems', Computational Methods for Differential Equations, (), pp. -. doi: 10.22034/cmde.2025.64894.2957
CHICAGO
F. Kiyaee and S. Mosazadeh, "$L^{\ell}-$Asymptotic properties of nonlinear Sturm-Liouville problems," Computational Methods for Differential Equations, (2025): -, doi: 10.22034/cmde.2025.64894.2957
VANCOUVER
Kiyaee, F., Mosazadeh, S. $L^{\ell}-$Asymptotic properties of nonlinear Sturm-Liouville problems. Computational Methods for Differential Equations, 2025; (): -. doi: 10.22034/cmde.2025.64894.2957