Numerical solutions for a branch crack in a half-plane

Document Type : Research Paper

Authors

1 Etrat School, Department of Education of South Khorasan, Namjo Street, Qaenat, 100190 South Khorasan, Iran.

2 Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

3 Department of Physics, Qaenat Branch, Islamic Azad University, Qaenat, Iran.

Abstract

The branch crack subjected to a remote stress in a half-plane of elasticity is modeled using singular integral equations (SIE) based on the distributed dislocation and complex potential method.  Numerical solution to the obtained SIE is discovered using the appropriate quadrature formulas.  Numerical works exhibit the nature of stress intensity factors (SIF) for each branch.

Keywords

Main Subjects


  • [1] S. N. Chatterjee, The stress field in the neighborhood of a branched crack in an infinite elastic sheet, Int. J. Solids Structures, 11 (1975), 521–538.
  • [2] Y. Z. Chen and Y. K. Cheung, New integral equation approach for the crack problem in elastic half-plane, Int. J. Fract., 46 (1990), 57–69.
  • [3] Y. Z. Chen, N. Hasebe, and K. Y. Lee, Multiple Crack Problems in Elasticity, WIT Press, Southampton, 2003.
  • [4] Y. Z. Chen and X. Y. Lin, Complex potentials and integral equations for curved crack and curved rigid line problems in plane elasticity, Acta Mech., 182 (2006), 211–229.
  • [5] Y. Z. Chen and N. Hasebe, New integration scheme for the branch crack problem, Eng. Fract. Mech., 52 (1995), 791–801.
  • [6] N. R. F. Elfakhakhre, N. M. A. Nik long, and Z. K. Eshkuvatov, Stress intensity factor for an elastic half-plane weakened by multiple curved cracks, Appl. Math. Model., 60 (2018), 540–551.
  • [7] N. R. F. Elfakhakhre, N. M. A. Nik long, Z. K. Eshkuvatov, and N. Senu, Numerical solution for circular arc cracks in half-plane elasticity, ASM Sc. J., 12(1) (2019), 82–91.
  • [8] N. R. F. Elfakhakhre, N. M. A. Nik Long, and Z. K. Eshkuvatov, Numerical solutions for cracks in an elastic half plane, Acta Mechanica Sinica, 35 (2019), 212–227.
  • [9] R. Ghorbanpoor, J. Saberi-Nadjafi, N. M. A. Nik Long, and M. Erfanian, Stability and convergence analysis of singular integral equations for unequal arms branch crack problems in plane elasticity, Appl. Math. Model, 103 (2022), 731–749.
  •  [10] K. B. Hamzah, N. M. A. Nik Long, N. Senu, and Z. K. Eshkuvatov, Numerical solutions for the thermally insulated cracks in bonded dissimilar materials using hypersingular integral equations, Applied Mathematical Modelling, 91 (2021), 358–373.
  • [11] K. B. Hamzah and N. M. A. Nik Long, Effect of Mechanical Loading on Two Unequal Slanted Cracks Length in Bi-Materials Plate, Malaysian Journal of Mathematical Sciences, 16(2) (2022), 185–197.
  • [12] N. Hasebe, K. Tamai, and T. Nakamura, Analysis of kinked crack under uniform heat flow, J. Engng. Mech, 112 (1986), 31–46.
  • [13] N. H. Husin, N. M. A. Nik Long, and N. Senu, Hypersingular Integral Equation for Triple Circular Arc Cracks in an Elastic Half-Plane, Malaysian Journal of Mathematical Sciences, 15(3) (2021), 387–396.
  • [14] M. Isida and T. Nishino, Formulae of stress intensity factors of bent cracks in plane problems, Trans, Japan Soc. Mech. Engng., 48 (1982), 729–738.
  • [15] Z. H. Jin and N. Noda, Edge crack in a nonhomogeneous half-plane under thermal loading, J. Therm. Stresses, 17(4) (2007), 591–599.
  • [16] H. Kitagawa and R. Yuuki, Analysis of branched cracks under biaxial stresses, Int. Fracture 1977, Taplin, D. M. R., University of Waterloo, Canada, 3 (1977), 201–211.
  • [17] X. Lin and L. M. Keep, Solution of multiple edge cracks in an elastic half-plane, Int. J. Fract., 137 (2006), 121–137.
  • [18] K. K. Lo, Analysis of branched crack problem, J. appl. Mech., 45 (1978), 797–803.
  • [19] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, CRC Press, Boca Raton, 2003.
  • [20] S. G. Mogilevskaya, Complex hypersingular integral equation for the piece-wise homogeneous half-plane with cracks, Int. J. Fract., 102 (2000), 177–204.
  • [21] M. M. Monfared, M. Ayatollahi, and S. M. Mousavi, The mixed-mode analysis of a functionally graded orthotropic half-plane weakened by multiple curved cracks, Arch. Appl. Mech., 86 (2016), 713–728 .
  • [22] M. M. Monfared, R. Sourki, and R. Yaghoubi, Analysis of multiple Yoffe-type moving cracks in an orthotropic half-plane under mixed mode loading condition, Iranian Journal of Mechanical Engineering, 18(2) (2017), 39–62.
  • [23] N. I. Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity, Noordhoff, Groningen, 1953.
  • [24] N. M. A. Nik Long and Z. K. Eshkuvatov, Hypersingular integral equations for multiple curved cracks in plane elasticity, Int. J. Solids Structures, 46 (2009), 2611–2617.
  • [25] M. Nourazar, W. L. Yang, and Z. T. Chen, Fracture analysis of a curved crack in a piezoelectric plane under general thermal loading, Eng. Frac. Mech, 284 (2023), 109208.
  • [26] M. P. Savruk, Two Dimensional Problem of Elasticity for Body with Crack, Naukova Dumka, Kiev (in Russian), 1981.
  • [27] G. M. Seed, Stress intensity factors for a surface-breaking crack in a half-plane subject to contact loading, Fatigue Fract. Eng. Mater. Struct., 24(1) (2001), 69–79.
  • [28] H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks, Third Edition, ASME Press, 2000.
  • [29] P. S. Theocaris and N. Ioakimidis, The symmetrically branched crack in an infinite elastic medium, J. Appl. Math. Phys, (ZAMP), 27 (1976), 801–814.