Symmetries and conservation laws of the Berger metric on a squashed three-sphere

Document Type : Research Paper

Authors

Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.

Abstract

 In this work, we obtain Noether, Lie, and Killing symmetries of the Lagrangian of the Berger metric on a squashed three-sphere. With the help of the result of Noether’s theorem, we have presented the expressions for conservation laws corresponding to all Noether symmetries.

Keywords

Main Subjects


  • [1] S. C. Anco, M. L. Gandarias, and E. Recio, Line-solitons, line-shocks, and conservation laws of a universal KP-like equation in 2+1 dimensions, J. Math. Anal. Appl., 504 (2021), 125319.
  • [2] Y. Aryanejad, Symmetry Analysis of Wave Equation on Conformally Flat Spaces, J. Geom. Phys., 161 (2021), 104029.
  • [3] Y. Aryanejad, Exact solutions of diffusion equation on sphere, Comput. Methods Differ. Equ., 10(3) (2022), 789-798.
  • [4] Y. Aryanejad, M. Jafari, and A. Khalili, Examining (3+1)- dimensional extended Sakovich equation using Lie group methods, International Journal of Mathematical Modeling & Computations, 13(2) (2023), 1-13.
  • [5] Y. Aryanejad and A. Khalili, Invariant solutions and conservation laws of time-dependent negative-order (vnCBS) equation, J. Mahani Math. Res, 13(2) (2024) 155–168.
  • [6] Y. Aryanejad and M. P. Foumani, Symmetry structures and conservation laws of four-dimensional non-reductive homogeneous spaces, Pramana, 98(2) (2024), 37.
  • [7] Y. Aryanejad and R. Mirzavand, Conservation laws and invariant solutions of time-dependent Calogero-Bogoyavlenskii-Schiff equation, J. Linear. Topological. Algebra. 11(4) (2022), 243-252.
  • [8] A. H. Bokhari, A. H. Kara, A. R. Kashif, and F. D. Zaman, Noether symmetries versus Killing vectors and isometries of spacetimes, International Journal of Theoretical Physics, 45(6) (2006), 1029-1039.
  • [9] R. Bakhshandeh-Chamazkoti, Symmetry analysis of the charged squashed Kaluza-Klein black hole metric, Mathematical Methods in the Applied Sciences, 39(12) (2015), 3163-3172.
  • [10] G. W. Bluman, A. F. Cheviakov, and S. C. Anco, Applications of symmetry methods to partial differential equations, Springer, 168 (2010).
  • [11] J. S. Dowker, Effective actions on the squashed 3-sphere, Class. Quantum Grav., 16(6) (1999), 1937.
  • [12] N. H. Ibragimov, Elementary Lie group analysis and ordinary differential equations, Computers & Mathematics with Applications, 38(5-6) (1999), 252.
  • [13] M. Jafari and R. Darvazebanzade, Approximate Symmetry Group Analysis and Similarity Reductions of the Perturbed mKdVKS Equation, Computational Methods for Differential Equations, 11(1) (2023), 175-182.
  • [14] M. Nadjafikhah, Y. AryaNejad, and N. Zandi, Conformal Einstein PP-Wave as Quantum Solutions, Journal of Mathematical Extension., 16(12) (2022), 1-19.
  • [15] M. Nadjafikhah and M. Jafary, Computation of Partially Invariant Solutions for the Einstein Walker Manifolds, Communications in Nonlinear Science and Numerical Simulation., 18(12) (2011), 3317-3324.
  • [16] E. Noether, Invariante variations probleme, Nachr. Akad. Wiss. Gottinqen Math. Phys. Kl, 21(3) (1971), 186-207.
  • [17] B. L. Hu, S. A. Fulling, and L. Parker, Quantized Scalar Fields in a Closed Anisotropic Universe, Phys. Rev. D, 8 (1973), 2377.
  • [18] N. Hitchin, Harmonic spinors, Adv. Math., 14(1) (1974).
  • [19] S. Rashidi and S. R. Hejazi, Self-adjointness, conservation laws and invariant solutions of the Buckmaster equation, Computational Methods for Differential Equations, 8(1) (2020), 85-98.
  • [20] J. Patera, R. T. Sharp, P. Winternitz, and H. Zassenhaus, Invariants of real low dimension Lie algebras, J. Mathematical Phys., 17 (1976), 986–994.
  • [21] M. Tsamparlis and A. Paliathanasis, Lie symmetries of geodesic equations and projective collineations, Nonlinear Dynamics, 62(1-2) (2010), 203-214.