A comprehensive review on quantum computing and algorithms

Document Type : Research Paper

Authors

Department of System Programming, South Ural State University, Chelyabinsk 454080, Russia.

Abstract

Quantum computers and simulations are creating new prospects by applying quantum physics concepts in innovative ways to generate and process information. It is expected that such computations will have a positive impact on several fields, from daily tasks to the discovery of new scientific findings. Quantum computing has become much more feasible in recent years, thanks to significant advances in both quantum software and hardware development. In fact, the confirmation of quantum supremacy marks a crucial turning point in the Noisy Intermediate-Scale Quantum (NISQ) era. To comprehend the current state of this developing field and identify unresolved issues that the quantum computing community has to address in the upcoming years, a thorough analysis of the current literature on quantum computing will be of immeasurable value. This article offers a thorough analysis of the literature on quantum computing, Qubits, quantum algorithms, and implementations.

Keywords

Main Subjects


  • [1] S. Aaronson, The limits of quantum computers, Sci. Am., 298 (2008), 62–69.
  • [2] L. M. Adleman, Molecular computation of solutions to combinatorial problems, Science, 266 (1994), 1021–1024.
  • [3] F. Arute et al., Quantum supremacy using a programmable superconducting processor, Nature, 574 (2019), 505– 510.
  • [4] L. Bacsardi, On the way to quantum-based satellite communication, IEEE Commun. Mag., 51(08) (2013), 50–55.
  • [5] P. Ball, Google moves closer to a universal quantum computer, Nature News, 2016.
  • [6] J. C. Bardin, E. Jeffrey, E. Lucero, and E. A. Huang, 28nm bulk − CMOS 4 − to − 8GHz < 2mW cryogenic pulse modulator for scalable quantum computing, 2019.
  • [7] R. Barends, M. Kelly, A. Megrant, J. Sank, M. Steffen, E. Jeffrey, S. Campbell, A. Blais, and J. Majer, Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing, Nature, 508 (2014), 500–503.
  • [8] R. Barends et al., Digital quantum simulation of fermionic models with a superconducting circuit, Nat. Commun., 6 (2015), 7654.
  • [9] E. Bernstein and U. Vazirani, Quantum complexity theory, Siam Journal on Computing, 26 (1997), 1411–1473.
  • [10] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning, Nature, 549 (2017), 195–202.
  • [11] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, Characterizing quantum supremacy in near-term devices, Nat. Phys., 14 (2018), 595–600.
  • [12] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Quantum amplitude amplification and estimation, 305 (2002), 53–74.
  • [13] N. T. Bronn, B. Abdo, K. Inoue, S. Lekuch, A. D. Corcoles, J. B. Hertzberg, M. Takita, L. S. Bishop, J. M. Gambetta, and J. M. Chow, Fast, high-fidelity readout of multiple qubits, Physical Review X, 7(2) (2017), 021015.
  • [14] J. Cabessa and H. T. Siegelmann, Evolving recurrent neural networks are super-Turing, (2011), 3200–3206.
  • [15] P. Chapman, Introducing the world’s most powerful quantum computer, Online Available (accessed 2022-01-05).
  • [16] G. Duclos-Cianci and D. Poulin, Fast decoders for topological quantum codes, Phys. Rev. Lett., 104 (2010), 050504.
  • [17] Hilbert: ColdQuanta’s powerful quantum computer, Online Available (accessed 2022-01-05).
  • [18] Can we build a million qubit quantum computer?, Online Available (accessed 2021-01-05).
  • [19] Quantum computers, Online Available (accessed 2022-01-05).
  • [20] I. Cong, S. Choi, and M. D. Lukin, Quantum convolutional neural networks, Nature Physics, 15(12) (2019), 1273–1278.
  • [21] B. J. Copeland and O. Shagrir, Do accelerating Turing machines compute the uncomputable?, Minds and Machines, 21 (2011), 221–239.
  • [22] J. A. Cortese and T. M. Braje, Loading classical data into a quantum computer, 2018.
  • [23] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe, Demonstration of a small programmable quantum computer with atomic qubits, Nature, 536 (2016), 63–66.
  • [24] C. Degenhardt, L. Geck, A. Kruth, P. Vliex, and S. van Waasen, CMOS based scalable cryogenic control electronics for qubits, in Proceedings of the IEEE International Conference on Quantum Computing and Engineering (QCE), (2017), 332–335.
  • [25] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 439 (1992), 553–558.
  • [26] D. Deutsch, Quantum-theory, the Church-Turing principle and the universal quantum computer, Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 400 (1985), 97–117.
  • [27] S. J. Devitt, Classical control of large-scale quantum computers, 2014, 26–39.
  • [28] A. Dewes, R. Lauro, F. R. Ong, V. Schmitt, P. Milman, P. Bertet, D. Vion, and D. Esteve, Quantum speeding-up of computation demonstrated in a superconducting two-qubit processor, Phys. Rev. B, 85 (2012), 140503.
  • [29] J. F. Du, J. H. Wu, M. J. Shi, L. Han, X. Y. Zhou, B. J. Ye, H. M. Weng, and R. D. Han, Implementation of quantum logic gates by nuclear magnetic resonance spectroscopy, Chin. Phys. Lett., 17 (2000), 64–66.
  • [30] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, 2014, arXiv:1411.4028. [31] E. Farhi, J. Goldstone, S. Gutmann, and H. Neven, Quantum algorithms for fixed qubit architectures, 2017.
  • [32] R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics, 21 (1982), 467–488.
  • [33] A. Fowler, M. Mariantoni, J. Martinis, and A. Cleland, Surface codes: Towards practical large-scale quantum computation, Phys. Rev. A, 86 (2012), 032324.
  • [34] A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg, Implementation of Shor’s algorithm on a linear nearest neighbour qubit array, Quantum Inf. Comput., 4 (2004), 237–251.
  • REFERENCES
  • [35] F. L. Gall, Improved quantum algorithm for triangle finding via combinatorial arguments, (2014), 216–225.
  • [36] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett., 100 (2008), 160501.
  • [37] L. K. Grover, A fast quantum mechanical algorithm for database search, (1996), 212–219.
  • [38] L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett., 79 (1997), 325–328.
  • [39] G. Guerreschi and M. Smelyanskiy, Practical optimization for hybrid quantum–classical algorithms, 2017, arXiv:1701.01450.
  • [40] Honeywell system model h1, Online Available (accessed 2021-01-05).
  • [41] D. Hanneke, J. Home, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, Realization of a programmable two-qubit quantum processor, Nat. Phys., 6 (2010), 13–16.
  • [42] A. W. Harrow, Small quantum computers and large classical data sets, 2020.
  • [43] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett., 103 (2009), 150502.
  • [44] N. W. Hendrickx, W. I. L. Lawrie, M. Russ, F. Van Riggelen, S. L. De Snoo, R. N. Schouten, A. Sammak, G. Scappucci, and M. Veldhorst, A four-qubit germanium quantum processor, Nature, 591 (2021), 580–585.
  • [45] B. Higgins, D. Berry, S. Bartlett, H. Wiseman, and G. Pryde, Entanglement-free Heisenberg-limited phase estimation, Nature, 450 (2007), 393–396.
  • [46] S. Y. Hou, G. Feng, Z. Wu, H. Zou, W. Shi, J. Zeng, C. Cao, S. Yu, Z. Sheng, X. Rao, B. Ren, D. Lu, J. Zou, G. Miao, J. Xiang, and B. Zeng, SpinQ Gemini: a desktop quantum computer for education and research, Online Available (accessed 2022-01-05).
  • [47] S. Imre and L. Gyongyosi, Advanced quantum communications – an engineering approach, 2013.
  • [48] M. Jarzyna and R. Demkowicz-Dobrzanski, True precision limits in quantum metrology, New J. Phys., 17(1) (2015), 013010.
  • [49] B. E. Kane, A silicon-based nuclear spin quantum computer, Nature, 393 (1998), 133–137.
  • [50] I. Kerenidis and A. Prakash, Quantum gradient descent for linear systems and least squares, 2017, arXiv:1704.04992.
  • [51] J. H. Kim, J. S. Lee, T. S. Hwang, and S. C. Lee, Experimental demonstration of a programmable quantum computer by NMR, J. Magn. Reson., 166 (2004), 35–38.
  • [52] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thome, J. W. Bos, Gaudry, A. Kruppa, L. Montgomery, D. A. Osvik, H. T. Riele, A. Timofeev, and Zimmermann, Factorization of a 768-bit RSA modulus, 6223 (2010), 333–350.
  • [53] M. Kuramata, R. Katsuki, and K. Nakata, Larger sparse quadratic assignment problem optimization using quantum annealing and a bit-flip heuristic algorithm, IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA), (2021), 556–565.
  • [54] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computers, Nature, 464 (2010), 45–53.
  • [55] B. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, Towards quantum chemistry on a quantum computer, Nat. Chem., 2 (2010), 106–111.
  • [56] R. J. Lipton, DNA solution of hard computational problems, Science, 268 (1995), 542–545.
  • [57] S. Lloyd, Universal quantum simulators, Science, 273 (1996), 1073–1078.
  • [58] S. Lloyd, J. Shapiro, F. Wong, Kumar, S. Shahriar, and H. Yuen, Infrastructure for the quantum internet, ACM SIGCOMM Comput. Commun. Rev., 34 (2004), 9–20.
  • [59] S. Lloyd, M. Mohseni, and Rebentrost, Quantum principal component analysis, Nature Physics, 10(9) (2014), 631–633.
  • [60] M. Luo, H. Li, H. Lai, and X. Wang, Unified quantum no-go theorems and transforming of quantum states in a restricted set, 2017. arXiv:1701.04166.
  • [61] Y. Manin, Computable and uncomputable (in Russian), 1980.
  • [62] E. A. Martinez, C. A. Muschik, Schindler, D. Nigg, A. Erhard, M. Heyl, Hauke, M. Dalmonte, T. Monz, Zoller, and R. Blatt, Real-time dynamics of lattice gauge theories with a few-qubit quantum computer, Nature, 534 (2016), 516–519.
  • [63] R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bohuslavskyi, R. Lavieville, L. Hutin, S. Barraud, M. Vinet, M. Sanquer, and S. D. Franceschi, A CMOS silicon spin qubit, Nat. Commun., 7 (2016), 13575.
  • [64] R. V. Meter and S. Devitt, Local and distributed quantum computation, IEEE Comput., 49(9) (2016), 31–42.
  • [65] R. Van Meter, Architecture of a Quantum Multicomputer Optimized for Shor’s Factoring Algorithm, PhD thesis, Keio University, 2006, arXiv:quant-ph/0607065.
  • [66] R. V. Meter, Quantum networking, 2014.
  • [67] A. Montanaro, Quantum algorithms: an overview, Npj Quantum Information, 2 (2016), 15023.
  • [68] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, 2000.
  • [69] A. Paler, S. Devitt, K. Nemoto, and I. Polian, Cross-level validation of topological quantum circuits, 8507 (2014), 189–200.
  • [70] C. Park, U. Kim, C. J. Ju, J. S. Park, Y. M. Kim, and K. Char, High mobility field effect transistor based on BASNO3 with Al2O3 gate oxide, Appl. Phys. Lett., 105 (2014), 203503.
  • [71] J. J. Pla, K. Y. Tan, J. Dehollain, W. H. Lim, J. J. L. Morton, D. N. Jamieson, A. S. Dzurak, and A. Morello, A single-atom electron spin qubit in silicon, Nature, 489 (2012), 541–545.
  • [72] J. Preskill, Quantum computing and the entanglement frontier, (2013), 63–69.
  • [73] J. Preskill, Quantum computing and the entanglement frontier, (2012).
  • [74] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum, 2 (2018), 79.
  • [75] J. Proos and C. Zalka, Shor’s discrete logarithm quantum algorithm for elliptic curves, QIC, 3(4) (2004), 317-344.