[1] M.L. Wang. Solitrary wave solution for variant Boussinesq equation. Phys. Lett. A, 199, (1995)
169-172.
[2] M.L. Wang. Applicatian of homogeneous balance method to exact solutions of nonlinear equation
in mathematical physics. Phys. Lett. A, 216, (1996) 67-75.
[3] M. Khalfallah. New exact travelling wave solutions of the (3+1) dimensional KadomtsevPetviashvili
(KP) equation. Commun. Nonlinear Sci. Numer. Simul., 14, (2009) 1169-1175.
[4] M. Eslami, B. Fathi vajargah and M. Mirzazadeh. Exact solutions of modified ZakharovKuznetsov
equation by the homogeneous balance method. Ain Shams Engineering Journal,
5, (2014) 221-225.
[5] W. Malfliet. Solitary wave solutions of nonlinear wave equations, Am. J. Phys, 60(7), (1992)
650-654.
[6] W. Malfliet and W. Hereman. The tanh method: I. Exact solutions of nonlinear evolution and
wave equations, Phys. Scripta, 54, (1996) 563-568.
[7] W. Malfliet and W. Hereman. The tanh method: II. Perturbation technique for conservative
systems, Phys. Scripta, 54, (1996) 569-575.
[8] S.K. Liu, Z. Fu, S.D. Liu and Q. Zhao. Jacobi elliptic function method and periodic wave
solutions of nonlinear wave equations, Phys. Lett. A, 289, (2001) 69-74.
[9] Z. Feng. The first integral method to study the Burgers-Korteweg-de Vries equation, J. Phys.
A, 35(2), (2002) 343-349.
[10] Z. Feng and X.H. Wang. The first integral method to the two-dimensional Burgers-KdV equation,
Phys. Lett. A, 308, (2002) 173-178.
[11] Z. Feng and G. Chen. Solitary wave solutions of the compound Burgers-Korteweg-de Vries
equation, Physica A, 352, (2005) 419-435.
[12] X.Q. Zhao and D.B. Tang. A new note on a homogeneous balance method. Phys. Lett. A, 297,
(2002) 59-67.
[13] A. Bekir. New exact travelling wave solutions of some complex nonlinear equations. Commun.
Nonlinear. Sci. Numer. Simulat., 14, (2009) 1069-1077.
[14] C.M. Khalique. Exact solutions and conservation laws of a coupled integrable dispersionless
system. Filomat, 26(5), (2012) 957-964.
[15] Bouthina Ahmed, Anjan Biswas, E. V. Krishnan and Sachin Kumar, Solitons and other solutions
to the genereralized Maccari system. Romanian Reports in Physics, 65(4), (2013) 1138-1154.