In this paper, we present a numerical method to approximate the solution of the multi-term time fractional diffusion-wave equation (M-TFDWE). The proposed method represents the solution as a sum of shifted Gegenbauer polynomials (SGPs) with unknown coefficients. By using the operational matrix of fractional integration and integer derivatives based on SGPs, the M-TFDWE is converted into a system of algebraic equations. The convergence analysis of this numerical method is also discussed. Finally, we provide two examples to illustrate the accuracy of the proposed method.
[1] M. Abbaszadeh, A. Bagheri Salec, A. Al-Khafaji, and S. Kamel, The effect of fractional-order derivative for pattern formation of Brusselator reaction–diffusion model occurring in chemical reactions, Iranian J. Math. Chem., 14(4) (2023), 243–269.
[2] H. Abo-Gabal, M. A. Zaky, and E. H. Doha, Fractional Romanovski–Jacobi tau method for time-fractional partial differential equations with nonsmooth solutions, Appl. Numer. Math., 182 (2022), 214–234.
[3] H. F. Ahmed, M. R. A. Moubarak, and W. A. Hashem, Gegenbauer spectral tau algorithm for solving fractional telegraph equation with convergence analysis, Pramana., 95(2) (2021),
[4] W. W. Bell, Special functions for scientists and engineers, Dover Publications., 2004.
[5] K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using operators of Caputo type, Lecture Notes in Mathematics, Springer., (2010).
[6] E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl., 62(5) (2011), 2364–2373.
[7] R. Gupta and S. Kumar, Chebyshev spectral method for the variable-order fractional mobile–immobile advection–dispersion equation arising from solute transport in heterogeneous media, J. Eng. Math., 142(1) (2023).
[8] M. H. Heydari, M. R. Hooshmandasl, F. M. Ghaini, and C. Cattani, Wavelets method for the time fractional diffusion-wave equation, Phys. Lett. A., 379(3) (2015), 71–76.
[9] A. Kumar, A. Bhardwaj, and B. R. Kumar, A meshless local collocation method for time fractional diffusion wave equation, Comput. Math. Appl., 78(6) (2019), 1851–1861.
[10] Z. Liu, A. Cheng, and X. Li, A novel finite difference discrete scheme for the time fractional diffusion-wave equation, Appl. Numer. Math., 134 (2018), 17–30.
[11] R. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32(1) (2004), 1–104,
[12] M. Molavi-Arabshahi, J. Rashidinia, and S. Tanoomand, An efficient spectral collocation method based on the generalized Laguerre polynomials to multi-term time fractional diffusion-wave equations, AIP Adv., 14(2) (2024).
[13] M. Molavi-Arabshahi, J. Rashidinia, and M. Yousefi, A Novel Hybrid Approach to Approximate fractional SubDiffusion Equation, Comput. Methods Differ. Equ., (2024), 1–12.
[14] M. Molavi-Arabshahi, J. Rashidinia, and M. Yousefi, An efficient approach for solving a class of fractional anomalous diffusion equation with convergence, Phys. Scr., 99 (7) (2024).
[15] O. Nikan, J. T. Machado, A. Golbabai, and J. Rashidinia, Numerical evaluation of the fractional Klein–Kramers model arising in molecular dynamics, J. Comput. Phys., 428 (2021).
[16] K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41(1) (2010), 9–12.
[17] C. Piret and E. Hanert, A radial basis functions method for fractional diffusion equations, J. Comput. Phys., 238 (2013), 71–81.
[18] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, 198, 1998.
[19] M. Pourbabaee and A. Saadatmandi, Collocation method based on Chebyshev polynomials for solving distributed order fractional differential equations, Comput. Methods Differ. Equ., 9(3) (2021), 858–873.
[20] M. Pourbabaee and A. Saadatmandi, New operational matrix of Riemann-Liouville fractional derivative of orthonormal Bernoulli polynomials for the numerical solution of some distributed-order time-fractional partial differential equations, J. Appl. Anal. Comput., 13(6) (2023), 3352–3373.
[21] J. Rashidinia and E. Mohmedi, Approximate solution of the multi-term time fractional diffusion and diffusionwave equations, Comput. Appl. Math., 39(3) (2020), 1–25.
[22] J. Rashidinia and E. Mohmedi, Numerical solution for solving fractional parabolic partial differential equations, Comput. Methods Differ. Equ., 10(1) (2022), 121–143.
[23] Y. A. Rossikhin and M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50(1) (1997), 15–67.
[24] A. Saadatmandi, A. Khani, and M. R. Azizi, Numerical calculation of fractional derivatives for the sinc functions via Legendre polynomials, Math. Interdiscip. Res., 5(2) (2020), 71–86.
[25] A. Secer and N. Ozdemir, An effective computational approach based on Gegenbauer wavelets for solving the time-fractional Kdv-Burgers-Kuramoto equation, Adv. Differ. Equ., 2019 (2019), 1–19.
[26] R. Shahabifar, M. Molavi-Arabshahi, and O. Nikan, Numerical analysis of COVID-19 model with Caputo fractional order derivative, AIP Adv., 14(3) (2024),
[27] A. Singh and S. Kumar, A convergent exponential B-spline collocation method for a time-fractional telegraph equation, Comput. Appl. Math., 42(2) (2023),
[28] F. Soufivand, F. Soltanian, and K. Mamehrashi, An operational matrix method based on the Gegenbauer polynomials for solving a class of fractional optimal control problems, Int. J. Ind. Electron. Control Optim., 4(4) (2021), 475–484.
[29] G. Szego, Orthogonal polynomials, American Mathematical Society, Providence, 1939.
[30] M. Usman, M. Hamid, T. Zubair, R. U. Haq, W. Wang, and M. B. Liu, Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials, Appl. Math. Comput., 372 (2020).
[31] S. Yaghoubi, H. Aminikhah, and K. Sadri, A spectral shifted Gegenbauer collocation method for fractional pantograph partial differential equations and its error analysis, S´adhan´a., 48(4) (2023).
[32] Y. Yang, Y. Chen, Y. Huang, and H. Wei, Spectral collocation method for the time fractional diffusion-wave equation and convergence analysis, Comput. Math. Appl., 73(6) (2017), 1218–1232.
[33] M. Yaseen, M. Abbas, T. Nazir, and D. Baleanu, A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation, Adv. Differ. Equ., 2017(1) (2017), 1–18.
Molavi-Arabshahi, M. , Rashidinia, J. and Tanoomand, S. (2025). Numerical solving of multi-term time fractional diffusion-wave equations using shifted Gegenbauer spectral collocation method. Computational Methods for Differential Equations, 13(3), 815-827. doi: 10.22034/cmde.2024.61509.2660
MLA
Molavi-Arabshahi, M. , , Rashidinia, J. , and Tanoomand, S. . "Numerical solving of multi-term time fractional diffusion-wave equations using shifted Gegenbauer spectral collocation method", Computational Methods for Differential Equations, 13, 3, 2025, 815-827. doi: 10.22034/cmde.2024.61509.2660
HARVARD
Molavi-Arabshahi, M., Rashidinia, J., Tanoomand, S. (2025). 'Numerical solving of multi-term time fractional diffusion-wave equations using shifted Gegenbauer spectral collocation method', Computational Methods for Differential Equations, 13(3), pp. 815-827. doi: 10.22034/cmde.2024.61509.2660
CHICAGO
M. Molavi-Arabshahi , J. Rashidinia and S. Tanoomand, "Numerical solving of multi-term time fractional diffusion-wave equations using shifted Gegenbauer spectral collocation method," Computational Methods for Differential Equations, 13 3 (2025): 815-827, doi: 10.22034/cmde.2024.61509.2660
VANCOUVER
Molavi-Arabshahi, M., Rashidinia, J., Tanoomand, S. Numerical solving of multi-term time fractional diffusion-wave equations using shifted Gegenbauer spectral collocation method. Computational Methods for Differential Equations, 2025; 13(3): 815-827. doi: 10.22034/cmde.2024.61509.2660