The averaging theory of third order shows that for a 4-dimensional Quartic Polynomial Differential System, at most 36 limit cycles can bifurcate from one singularity with eigenvalues of the form ±ωi, 0, and 0.
[1] E. Bendib, S. Badi, and A. Makhlouf, On the 3-dimensional hopf bifurcation via averaging theory of third order, Turkish Journal of Mathematics, 41(4) (2017), 1053–1071.
[2] N. Bogolyubov, On some statistical methods in mathematical physics, Izdat. Akad. Nauk Ukr. SSR, Kiev, 1945.
[3] A. Buic˘a and J. Llibre, Averaging methods for finding periodic orbits via brouwer degree, Bulletin des sciences mathematiques, 128(1) (2004), 7–22.
[4] D. Djedid, E. O. Bendib, and A. Makhlouf, Four-dimensional zero-Hopf bifurcation of quadratic polynomial differential system, via averaging theory of third order, J. Dyn. Control Syst., 28(4) (2022), 901–916.
[5] P. Fatou, Sur le mouvement d’un système soumis à des forces à courte période, Bulletin de la Société Mathématique de France, 56 (1928), 98–139.
[6] A. Feddaoui, J. Llibre, and A. Makhlouf, 4-dimensional zero-hopf bifurcation for polynomial differentials systems with cubic homogeneous nonlinearities via averaging theory, International Journal of Dynamical Systems and Differential Equations, 10(4) (2020), 321–328.
[7] N. Krylov and N. Bogoliubov, The application of methods of nonlinear mechanics to the theory of stationary oscillations, pub. 8 ukrainian acad. Sci., Kiev, 1934.
[8] J. Llibre, A. Makhlouf, and S. Badi, 3-dimensional hopf bifurcation via averaging theory of second order, Discrete and Continuous Dynamical Systems-Series A (DCDS-A), 25(4) (2009), 1287.
[9] J. Llibre, D. D. Novaes, and M. A. Teixeira, Higher order averaging theory for finding periodic solutions via brouwer degree, Nonlinearity, 27(3) (2014), 563.
[10] J. Llibre and X. Zhang, Hopf bifurcation in higher dimensional differential systems via the averaging method, Pacific journal of mathematics, 240(2) (2009), 321–341.
[11] V. Reitmann, F. Verhulst, Nonlinear differential equations and dynamical systems, berlin etc., springer-verlag 1990. ix, 227 pp., 107 figs., dm 38,00 isbn 3-540-50628-4 (universitext), Zeitschrift Angewandte Mathematik und Mechanik, 72(1) (1992), 77–77.
[12] J. A. Sanders, F. Verhulst, and J. Murdock, Averaging methods in nonlinear dynamical systems, Springer, 59 (2007).
[13] G. Schmidt, J. A. Sanders and F. Verhulst, Averaging methods in nonlinear dynamical systems, berlin-heidelberg New York-Tokyo, springer-verlag 1985. x. 247 s., dm 84,–. 31 abb., isbn 3-540-96229-8 (applied mathematical sciences), 59 (1987).
[14] I. R. Shafarevich, Basic algebraic geometry, volume Band 213 of Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch.
Bouaziz, C. , Makhlouf, A. and Tabet, A. Eddine (2025). Zero-Hopf bifurcation in a four-dimensional quartic polynomial differential system via the averaging theory of the third order. Computational Methods for Differential Equations, 13(4), 1148-1161. doi: 10.22034/cmde.2024.61831.2690
MLA
Bouaziz, C. , , Makhlouf, A. , and Tabet, A. Eddine. "Zero-Hopf bifurcation in a four-dimensional quartic polynomial differential system via the averaging theory of the third order", Computational Methods for Differential Equations, 13, 4, 2025, 1148-1161. doi: 10.22034/cmde.2024.61831.2690
HARVARD
Bouaziz, C., Makhlouf, A., Tabet, A. Eddine (2025). 'Zero-Hopf bifurcation in a four-dimensional quartic polynomial differential system via the averaging theory of the third order', Computational Methods for Differential Equations, 13(4), pp. 1148-1161. doi: 10.22034/cmde.2024.61831.2690
CHICAGO
C. Bouaziz , A. Makhlouf and A. Eddine Tabet, "Zero-Hopf bifurcation in a four-dimensional quartic polynomial differential system via the averaging theory of the third order," Computational Methods for Differential Equations, 13 4 (2025): 1148-1161, doi: 10.22034/cmde.2024.61831.2690
VANCOUVER
Bouaziz, C., Makhlouf, A., Tabet, A. Eddine Zero-Hopf bifurcation in a four-dimensional quartic polynomial differential system via the averaging theory of the third order. Computational Methods for Differential Equations, 2025; 13(4): 1148-1161. doi: 10.22034/cmde.2024.61831.2690